Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js
Chemical Data Processing Library Python API - Version 1.2.3
All Classes Namespaces Functions Variables Pages
Classes | Functions
CDPL.Descr Package Reference

Contains classes and functions related to the generation and processing of pharmacophore and molecule descriptors. More...

Classes

class  AtomAutoCorrelation3DVectorCalculator
 AtomAutoCorrelation3DVectorCalculator. More...
 
class  AtomRDFCodeCalculator
 AtomRDFCodeCalculator. More...
 
class  AutoCorrelation2DVectorCalculator
 AutoCorrelation2DVectorCalculator. More...
 
class  BCUTDescriptorCalculator
 BCUTDescriptorCalculator. More...
 
class  BitSetBulkSimilarityCalculator
 
class  BurdenMatrixGenerator
 BurdenMatrixGenerator. More...
 
class  CircularFingerprintGenerator
 CircularFingerprintGenerator. More...
 
class  CosineSimilarity
 Functor class for calculating Cosine Similarities [WCOS] of bitsets and vectors. More...
 
class  DVectorBulkSimilarityCalculator
 
class  DiceSimilarity
 Functor class for calculating the Dice Similarity [GSIM] of bitsets. More...
 
class  DoubleBitSet2Functor
 
class  DoubleDVector2Functor
 
class  DoubleFVector2Functor
 
class  DoubleLVector2Functor
 
class  DoubleULVector2Functor
 
class  EuclideanDistance
 Functor class for calculating the Euclidean Distance [CITB] between bitsets and vectors. More...
 
class  EuclideanSimilarity
 Functor class for calculating the Euclidean Similarity [GSIM] of bitsets. More...
 
class  FVectorBulkSimilarityCalculator
 
class  FeatureAutoCorrelation3DVectorCalculator
 FeatureAutoCorrelation3DVectorCalculator. More...
 
class  FeatureRDFCodeCalculator
 FeatureRDFCodeCalculator. More...
 
class  HammingDistance
 Functor class for calculating the Hamming Distance [WHAM, CITB] between bitsets. More...
 
class  LVectorBulkSimilarityCalculator
 
class  MACCSFingerprintGenerator
 Generation of 166 bit MACCS key fingerprints. More...
 
class  ManhattanDistance
 Functor class for calculating the Manhattan Distance [MADI] between bitsets and vectors. More...
 
class  ManhattanSimilarity
 Functor class for calculating the Manhattan Similarity [GSIM] of bitsets. More...
 
class  MolecularComplexityCalculator
 MolecularComplexityCalculator. More...
 
class  MoleculeAutoCorr2DDescriptorCalculator
 MoleculeAutoCorr2DDescriptorCalculator. More...
 
class  MoleculeAutoCorr3DDescriptorCalculator
 MoleculeAutoCorr3DDescriptorCalculator. More...
 
class  MoleculeRDFDescriptorCalculator
 MoleculeRDFDescriptorCalculator. More...
 
class  NPoint2DPharmacophoreFingerprintGenerator
 NPoint2DPharmacophoreFingerprintGenerator. More...
 
class  NPoint3DPharmacophoreFingerprintGenerator
 NPoint3DPharmacophoreFingerprintGenerator. More...
 
class  NPointPharmacophoreFingerprintGenerator
 NPointPharmacophoreFingerprintGenerator. More...
 
class  PathFingerprintGenerator
 PathFingerprintGenerator. More...
 
class  PharmacophoreAutoCorr3DDescriptorCalculator
 PharmacophoreAutoCorr3DDescriptorCalculator. More...
 
class  PharmacophoreRDFDescriptorCalculator
 PharmacophoreRDFDescriptorCalculator. More...
 
class  PubChemFingerprintGenerator
 Generation of 881 bit PubChem fingerprints. More...
 
class  TanimotoSimilarity
 Functor class for calculating Tanimoto Similarities [CITB] of bitsets and vectors. More...
 
class  TverskySimilarity
 Functor class for calculating the Tversky Similarity [GSIM] of bitsets. More...
 
class  ULVectorBulkSimilarityCalculator
 

Functions

float calcGeometricalDiameter (Chem.AtomContainer cntnr, Chem.Atom3DCoordinatesFunction coords_func)
 
float calcGeometricalRadius (Chem.AtomContainer cntnr, Chem.Atom3DCoordinatesFunction coords_func)
 
int calcHammingDistance (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Hamming Distance [WHAM, CITB] between the bitsets bs1 and bs2. More...
 
float calcEuclideanDistance (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Euclidean Distance [CITB] between the bitsets bs1 and bs2. More...
 
float calcDiceSimilarity (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Dice Similarity [GSIM] of the bitsets bs1 and bs2. More...
 
float calcCosineSimilarity (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Cosine Similarity [WCOS] of the bitsets bs1 and bs2. More...
 
float calcEuclideanSimilarity (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Euclidean Similarity [GSIM] of the bitsets bs1 and bs2. More...
 
float calcManhattanSimilarity (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Manhattan Similarity [GSIM] of the bitsets bs1 and bs2. More...
 
float calcTanimotoSimilarity (Util.BitSet bs1, Util.BitSet bs2)
 Calculates the Tanimoto Similarity [CITB] of the bitsets bs1 and bs2. More...
 
float calcTverskySimilarity (Util.BitSet bs1, Util.BitSet bs2, float a, float b)
 Calculates the Tversky Similarity [GSIM] of the bitsets bs1 and bs2. More...
 
float calcEuclideanDistance (Math.DVector v1, Math.DVector v2)
 Calculates the Euclidean Distance [CITB] between the vectors v1 and v2. More...
 
float calcManhattanDistance (Math.DVector v1, Math.DVector v2)
 Calculates the Manhattan Distance [MADI] between the vectors v1 and v2. More...
 
float calcCosineSimilarity (Math.DVector v1, Math.DVector v2)
 Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2. More...
 
float calcTanimotoSimilarity (Math.DVector v1, Math.DVector v2)
 Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2. More...
 
float calcGeometricalDiameter (Chem.Entity3DContainer cntnr)
 
float calcGeometricalRadius (Chem.Entity3DContainer cntnr)
 
float calcEuclideanDistance (Math.FVector v1, Math.FVector v2)
 Calculates the Euclidean Distance [CITB] between the vectors v1 and v2. More...
 
float calcManhattanDistance (Math.FVector v1, Math.FVector v2)
 Calculates the Manhattan Distance [MADI] between the vectors v1 and v2. More...
 
float calcCosineSimilarity (Math.FVector v1, Math.FVector v2)
 Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2. More...
 
float calcTanimotoSimilarity (Math.FVector v1, Math.FVector v2)
 Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2. More...
 
float calcEuclideanDistance (Math.LVector v1, Math.LVector v2)
 Calculates the Euclidean Distance [CITB] between the vectors v1 and v2. More...
 
float calcManhattanDistance (Math.LVector v1, Math.LVector v2)
 Calculates the Manhattan Distance [MADI] between the vectors v1 and v2. More...
 
float calcCosineSimilarity (Math.LVector v1, Math.LVector v2)
 Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2. More...
 
float calcTanimotoSimilarity (Math.LVector v1, Math.LVector v2)
 Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2. More...
 
float calcKierShape1 (Chem.MolecularGraph molgraph)
 
int calcZagrebIndex1 (Chem.MolecularGraph molgraph)
 
float calcKierShape2 (Chem.MolecularGraph molgraph)
 
int calcZagrebIndex2 (Chem.MolecularGraph molgraph)
 
float calcKierShape3 (Chem.MolecularGraph molgraph)
 
int calcTopologicalDiameter (Chem.MolecularGraph molgraph)
 
int calcTopologicalRadius (Chem.MolecularGraph molgraph)
 
int calcTotalWalkCount (Chem.MolecularGraph molgraph)
 
float calcRandicIndex (Chem.MolecularGraph molgraph)
 
int calcWienerIndex (Chem.MolecularGraph molgraph)
 
float calcRingComplexity (Chem.MolecularGraph molgraph)
 
float calcMolecularComplexity (Chem.MolecularGraph molgraph)
 
float calcEuclideanDistance (Math.ULVector v1, Math.ULVector v2)
 Calculates the Euclidean Distance [CITB] between the vectors v1 and v2. More...
 
float calcManhattanDistance (Math.ULVector v1, Math.ULVector v2)
 Calculates the Manhattan Distance [MADI] between the vectors v1 and v2. More...
 
float calcCosineSimilarity (Math.ULVector v1, Math.ULVector v2)
 Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2. More...
 
float calcTanimotoSimilarity (Math.ULVector v1, Math.ULVector v2)
 Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2. More...
 

Detailed Description

Contains classes and functions related to the generation and processing of pharmacophore and molecule descriptors.

Function Documentation

◆ calcGeometricalDiameter() [1/2]

float CDPL.Descr.calcGeometricalDiameter ( Chem.AtomContainer  cntnr,
Chem.Atom3DCoordinatesFunction  coords_func 
)
Parameters
cntnr
coords_func
Returns

◆ calcGeometricalRadius() [1/2]

float CDPL.Descr.calcGeometricalRadius ( Chem.AtomContainer  cntnr,
Chem.Atom3DCoordinatesFunction  coords_func 
)
Parameters
cntnr
coords_func
Returns

◆ calcHammingDistance()

int CDPL.Descr.calcHammingDistance ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Hamming Distance [WHAM, CITB] between the bitsets bs1 and bs2.

The Hamming Distance D_{ab} is calculated by:

[ D_{ab} = N_a + N_b ]

where N_a is the number of bits that are set in the first bitset but not in the second bitset and N_b is the number of bits that are set in the second bitset but not in the first one.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated distance.

◆ calcEuclideanDistance() [1/5]

float CDPL.Descr.calcEuclideanDistance ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Euclidean Distance [CITB] between the bitsets bs1 and bs2.

The Euclidean Distance D_{ab} is calculated by:

[ D_{ab} = \sqrt{N_a + N_b} ]

where N_a is the number of bits that are set in the first bitset but not in the second bitset and N_b is the number of bits that are set in the second bitset but not in the first one.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated distance.

◆ calcDiceSimilarity()

float CDPL.Descr.calcDiceSimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Dice Similarity [GSIM] of the bitsets bs1 and bs2.

The Dice Similarity S_{ab} is calculated by:

[ S_{ab} = \frac{2 * N_{ab}}{N_a + N_b + 2 * N_{ab}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are only set in the first bitset and N_b is the number of bits that are only set in the second bitset.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated similarity measure.

◆ calcCosineSimilarity() [1/5]

float CDPL.Descr.calcCosineSimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Cosine Similarity [WCOS] of the bitsets bs1 and bs2.

The Cosine Similarity S_{ab} is calculated by:

[ S_{ab} = \frac{N_{ab}}{\sqrt{N_a * N_b}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are set in the first bitset and N_b is the number of bits that are set in the second bitset.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated similarity measure.

◆ calcEuclideanSimilarity()

float CDPL.Descr.calcEuclideanSimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Euclidean Similarity [GSIM] of the bitsets bs1 and bs2.

The Euclidean Similarity S_{ab} is calculated by:

[ S_{ab} = \sqrt{\frac{N_{ab} + N_{!ab}}{N_a + N_b + N_{ab} + N_{!ab}}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are set only in the first bitset, N_b is the number of bits that are set only in the second bitset and N_{!ab} is the number of bits that are not set in both bitsets.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated similarity measure.

◆ calcManhattanSimilarity()

float CDPL.Descr.calcManhattanSimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Manhattan Similarity [GSIM] of the bitsets bs1 and bs2.

The Manhattan Similarity S_{ab} is calculated by:

[ S_{ab} = \frac{N_a + N_b}{N_a + N_b + N_{ab} + N_{!ab}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are set only in the first bitset, N_b is the number of bits that are set only in the second bitset and N_{!ab} is the number of bits that are not set in both bitsets.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated similarity measure.

◆ calcTanimotoSimilarity() [1/5]

float CDPL.Descr.calcTanimotoSimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2 
)

Calculates the Tanimoto Similarity [CITB] of the bitsets bs1 and bs2.

The Tanimoto Similarity S_{ab} is calculated by:

[ S_{ab} = \frac{N_{ab}}{N_a + N_b - N_{ab}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are set in the first bitset and N_b is the number of bits that are set in the second bitset.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
Returns
The calculated similarity measure.

◆ calcTverskySimilarity()

float CDPL.Descr.calcTverskySimilarity ( Util.BitSet  bs1,
Util.BitSet  bs2,
float  a,
float  b 
)

Calculates the Tversky Similarity [GSIM] of the bitsets bs1 and bs2.

The Tversky Similarity S_{ab} is calculated by:

[ S_{ab} = \frac{N_{ab}}{a * N_a + b * N_b + N_{ab}} ]

where N_{ab} is the number of bits that are set in both bitsets, N_a is the number of bits that are only set in the first bitset and N_b is the number of bits that are only set in the second bitset. a and b are bitset contribution weighting factors.

The Tversky measure is asymmetric. Setting the parameters a = b = 1.0 makes it identical to the Tanimoto measure.

If the specified bitsets bs1 and bs2 are of different size, missing bits at the end of the smaller bitset are assumed to be zero.

Parameters
bs1The first bitset.
bs2The second bitset.
aWeights the contribution of the first bitset.
bWeights the contribution of the second bitset.
Returns
The calculated similarity measure.

◆ calcEuclideanDistance() [2/5]

float CDPL.Descr.calcEuclideanDistance ( Math.DVector  v1,
Math.DVector  v2 
)

Calculates the Euclidean Distance [CITB] between the vectors v1 and v2.

The Euclidean Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcManhattanDistance() [1/4]

float CDPL.Descr.calcManhattanDistance ( Math.DVector  v1,
Math.DVector  v2 
)

Calculates the Manhattan Distance [MADI] between the vectors v1 and v2.

The Manhattan Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |}_1 ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcCosineSimilarity() [2/5]

float CDPL.Descr.calcCosineSimilarity ( Math.DVector  v1,
Math.DVector  v2 
)

Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2.

The Cosine Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}{\left | \vec{v}_2 \right |}} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcTanimotoSimilarity() [2/5]

float CDPL.Descr.calcTanimotoSimilarity ( Math.DVector  v1,
Math.DVector  v2 
)

Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2.

The Tanimoto Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}^2 + {\left | \vec{v}_2 \right |}^2 - \vec{v}_1 \cdot \vec{v}_2} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcGeometricalDiameter() [2/2]

float CDPL.Descr.calcGeometricalDiameter ( Chem.Entity3DContainer  cntnr)
Parameters
cntnr
Returns

◆ calcGeometricalRadius() [2/2]

float CDPL.Descr.calcGeometricalRadius ( Chem.Entity3DContainer  cntnr)
Parameters
cntnr
Returns

◆ calcEuclideanDistance() [3/5]

float CDPL.Descr.calcEuclideanDistance ( Math.FVector  v1,
Math.FVector  v2 
)

Calculates the Euclidean Distance [CITB] between the vectors v1 and v2.

The Euclidean Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcManhattanDistance() [2/4]

float CDPL.Descr.calcManhattanDistance ( Math.FVector  v1,
Math.FVector  v2 
)

Calculates the Manhattan Distance [MADI] between the vectors v1 and v2.

The Manhattan Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |}_1 ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcCosineSimilarity() [3/5]

float CDPL.Descr.calcCosineSimilarity ( Math.FVector  v1,
Math.FVector  v2 
)

Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2.

The Cosine Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}{\left | \vec{v}_2 \right |}} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcTanimotoSimilarity() [3/5]

float CDPL.Descr.calcTanimotoSimilarity ( Math.FVector  v1,
Math.FVector  v2 
)

Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2.

The Tanimoto Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}^2 + {\left | \vec{v}_2 \right |}^2 - \vec{v}_1 \cdot \vec{v}_2} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcEuclideanDistance() [4/5]

float CDPL.Descr.calcEuclideanDistance ( Math.LVector  v1,
Math.LVector  v2 
)

Calculates the Euclidean Distance [CITB] between the vectors v1 and v2.

The Euclidean Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcManhattanDistance() [3/4]

float CDPL.Descr.calcManhattanDistance ( Math.LVector  v1,
Math.LVector  v2 
)

Calculates the Manhattan Distance [MADI] between the vectors v1 and v2.

The Manhattan Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |}_1 ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcCosineSimilarity() [4/5]

float CDPL.Descr.calcCosineSimilarity ( Math.LVector  v1,
Math.LVector  v2 
)

Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2.

The Cosine Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}{\left | \vec{v}_2 \right |}} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcTanimotoSimilarity() [4/5]

float CDPL.Descr.calcTanimotoSimilarity ( Math.LVector  v1,
Math.LVector  v2 
)

Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2.

The Tanimoto Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}^2 + {\left | \vec{v}_2 \right |}^2 - \vec{v}_1 \cdot \vec{v}_2} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcKierShape1()

float CDPL.Descr.calcKierShape1 ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcZagrebIndex1()

int CDPL.Descr.calcZagrebIndex1 ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcKierShape2()

float CDPL.Descr.calcKierShape2 ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcZagrebIndex2()

int CDPL.Descr.calcZagrebIndex2 ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcKierShape3()

float CDPL.Descr.calcKierShape3 ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcTopologicalDiameter()

int CDPL.Descr.calcTopologicalDiameter ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcTopologicalRadius()

int CDPL.Descr.calcTopologicalRadius ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcTotalWalkCount()

int CDPL.Descr.calcTotalWalkCount ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcRandicIndex()

float CDPL.Descr.calcRandicIndex ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcWienerIndex()

int CDPL.Descr.calcWienerIndex ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcRingComplexity()

float CDPL.Descr.calcRingComplexity ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcMolecularComplexity()

float CDPL.Descr.calcMolecularComplexity ( Chem.MolecularGraph  molgraph)
Parameters
molgraph
Returns

◆ calcEuclideanDistance() [5/5]

float CDPL.Descr.calcEuclideanDistance ( Math.ULVector  v1,
Math.ULVector  v2 
)

Calculates the Euclidean Distance [CITB] between the vectors v1 and v2.

The Euclidean Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcManhattanDistance() [4/4]

float CDPL.Descr.calcManhattanDistance ( Math.ULVector  v1,
Math.ULVector  v2 
)

Calculates the Manhattan Distance [MADI] between the vectors v1 and v2.

The Manhattan Distance D_{12} is calculated by:

[ D_{12} = {\left | \vec{v}_1 - \vec{v}_2 \right |}_1 ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated distance measure.

◆ calcCosineSimilarity() [5/5]

float CDPL.Descr.calcCosineSimilarity ( Math.ULVector  v1,
Math.ULVector  v2 
)

Calculates the Cosine Similarity [WCOS] of the vectors v1 and v2.

The Cosine Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}{\left | \vec{v}_2 \right |}} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.

◆ calcTanimotoSimilarity() [5/5]

float CDPL.Descr.calcTanimotoSimilarity ( Math.ULVector  v1,
Math.ULVector  v2 
)

Calculates the Tanimoto Similarity [CITB] of the vectors v1 and v2.

The Tanimoto Similarity S_{12} is calculated by:

[ S_{12} = \frac{\vec{v}_1 \cdot \vec{v}_2}{{\left | \vec{v}_1 \right |}^2 + {\left | \vec{v}_2 \right |}^2 - \vec{v}_1 \cdot \vec{v}_2} ]

Parameters
v1The first vector.
v2The second vector.
Returns
The calculated similarity measure.