Chemical Data Processing Library Python API - Version 1.2.1
|
Contains classes and functions related to molecular force fields. More...
Functions | |
None | clearMMFF94Charge (Chem.Atom atom) |
bool | hasMMFF94Charge (Chem.Atom atom) |
float | getMMFF94Charge (Chem.Atom atom) |
None | setMMFF94Charge (Chem.Atom atom, float charge) |
int | perceiveUFFType (Chem.Atom atom, Chem.MolecularGraph molgraph) |
None | clearUFFType (Chem.Atom atom) |
bool | hasUFFType (Chem.Atom atom) |
int | getUFFType (Chem.Atom atom) |
None | setUFFType (Chem.Atom atom, int type) |
None | clearMMFF94SymbolicType (Chem.Atom atom) |
bool | hasMMFF94SymbolicType (Chem.Atom atom) |
str | getMMFF94SymbolicType (Chem.Atom atom) |
None | setMMFF94SymbolicType (Chem.Atom atom, str type) |
None | clearMMFF94NumericType (Chem.Atom atom) |
bool | hasMMFF94NumericType (Chem.Atom atom) |
int | getMMFF94NumericType (Chem.Atom atom) |
None | setMMFF94NumericType (Chem.Atom atom, int type) |
None | clearMMFF94TypeIndex (Chem.Bond bond) |
bool | hasMMFF94TypeIndex (Chem.Bond bond) |
int | getMMFF94TypeIndex (Chem.Bond bond) |
None | setMMFF94TypeIndex (Chem.Bond bond, int type_idx) |
float | calcElasticPotentialGradient (ElasticPotentialList list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcElasticPotentialEnergy (ElasticPotentialList list, Math.Vector3DArray coords) |
float | calcElasticPotentialGradient (ElasticPotential pot, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcElasticPotentialEnergy (ElasticPotential pot, Math.Vector3DArray coords) |
float | calcMMFF94AngleBendingGradient (MMFF94AngleBendingInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94AngleBendingEnergy (MMFF94AngleBendingInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94AngleBendingGradient (MMFF94AngleBendingInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94AngleBendingEnergy (MMFF94AngleBendingInteraction iaction, Math.Vector3DArray coords) |
float | calcMMFF94BondStretchingGradient (MMFF94BondStretchingInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94BondStretchingEnergy (MMFF94BondStretchingInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94BondStretchingGradient (MMFF94BondStretchingInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94BondStretchingEnergy (MMFF94BondStretchingInteraction iaction, Math.Vector3DArray coords) |
float | calcMMFF94ElectrostaticGradient (MMFF94ElectrostaticInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94ElectrostaticEnergy (MMFF94ElectrostaticInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94ElectrostaticGradient (MMFF94ElectrostaticInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94ElectrostaticEnergy (MMFF94ElectrostaticInteraction iaction, Math.Vector3DArray coords) |
None | filterInteractions (MMFF94InteractionData ia_data, MMFF94InteractionData filtered_ia_data, Util.BitSet inc_atom_mask) |
float | calcMMFF94OutOfPlaneBendingGradient (MMFF94OutOfPlaneBendingInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94OutOfPlaneBendingEnergy (MMFF94OutOfPlaneBendingInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94OutOfPlaneBendingGradient (MMFF94OutOfPlaneBendingInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94OutOfPlaneBendingEnergy (MMFF94OutOfPlaneBendingInteraction iaction, Math.Vector3DArray coords) |
float | calcMMFF94StretchBendGradient (MMFF94StretchBendInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94StretchBendEnergy (MMFF94StretchBendInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94StretchBendGradient (MMFF94StretchBendInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94StretchBendEnergy (MMFF94StretchBendInteraction iaction, Math.Vector3DArray coords) |
float | calcMMFF94TorsionGradient (MMFF94TorsionInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94TorsionEnergy (MMFF94TorsionInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94TorsionGradient (MMFF94TorsionInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94TorsionEnergy (MMFF94TorsionInteraction iaction, Math.Vector3DArray coords) |
float | calcMMFF94VanDerWaalsGradient (MMFF94VanDerWaalsInteractionList ia_list, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94VanDerWaalsEnergy (MMFF94VanDerWaalsInteractionList ia_list, Math.Vector3DArray coords) |
float | calcMMFF94VanDerWaalsGradient (MMFF94VanDerWaalsInteraction iaction, Math.Vector3DArray coords, Math.Vector3DArray grad) |
float | calcMMFF94VanDerWaalsEnergy (MMFF94VanDerWaalsInteraction iaction, Math.Vector3DArray coords) |
None | assignMMFF94BondTypeIndices (Chem.MolecularGraph molgraph, bool strict, bool overwrite) |
None | calcMMFF94AtomCharges (Chem.MolecularGraph molgraph, bool strict, bool overwrite) |
None | assignMMFF94AtomTypes (Chem.MolecularGraph molgraph, bool strict, bool overwrite) |
None | assignUFFAtomTypes (Chem.MolecularGraph molgraph, bool overwrite) |
Chem.FragmentList | perceiveMMFF94AromaticRings (Chem.MolecularGraph molgraph) |
Chem.FragmentList | perceiveMMFF94AromaticRings (Chem.MolecularGraph molgraph, bool overwrite) |
None | clearMMFF94AromaticRings (Chem.MolecularGraph molgraph) |
bool | hasMMFF94AromaticRings (Chem.MolecularGraph molgraph) |
Chem.FragmentList | getMMFF94AromaticRings (Chem.MolecularGraph molgraph) |
None | setMMFF94AromaticRings (Chem.MolecularGraph molgraph, Chem.FragmentList rings) |
float | calcDistance (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos) |
Calculates the distance \( r_{ij} \) between two atoms i and j. More... | |
float | calcSquaredDistance (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos) |
Calculates the squared distance \( r_{ij}^2 \) between two atoms i and j. More... | |
tuple | calcBondLengthsAndAngle (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos) |
float | calcBondAngle (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, float r_ij, float r_jk) |
Calculates the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k. More... | |
float | calcBondAngle (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos) |
Calculates the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k. More... | |
float | calcOutOfPlaneAngle (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D oop_atom_pos, float r_jl) |
Calculates the out-of-plane angle \( \chi_{ijk;l} \) between the bond j-l and the plane defined by the atoms i-j-k. More... | |
float | calcDistanceDerivatives (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, Math.Vector3D atom1_deriv, Math.Vector3D atom2_deriv) |
Calculates the partial derivatives \( \frac{\partial r_{ij}}{\partial \vec{p_x}} \) of the distance \( r_{ij} \) between two atoms i and j. More... | |
float | calcBondAngleCosDerivatives (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D term_atom1_deriv, Math.Vector3D ctr_atom_deriv, Math.Vector3D term_atom2_deriv) |
Calculates the partial derivatives \( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_x}} \) of the of the cosine of the angle \( \vartheta_{ijk} \) between the bonds i-j and j-k. More... | |
float | calcOutOfPlaneAngleCosDerivatives (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D oop_atom_pos, Math.Vector3D term_atom1_deriv, Math.Vector3D ctr_atom_deriv, Math.Vector3D term_atom2_deriv, Math.Vector3D oop_atom_deriv) |
Calculates the partial derivatives \( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_x}} \) of the cosine of the angle \( \omega_{ijk;l} \) between the bond j-l and the normal of the plane defined by the atoms i-j-k. More... | |
float | calcDihedralAngleCosDerivatives (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom1_pos, Math.Vector3D ctr_atom2_pos, Math.Vector3D term_atom2_pos, Math.Vector3D term_atom1_deriv, Math.Vector3D ctr_atom1_deriv, Math.Vector3D ctr_atom2_deriv, Math.Vector3D term_atom2_deriv) |
Calculates the partial derivatives \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_x}} \) of the cosine of the angle \( \Phi_{ijkl} \) between the planes defined by the atom triplets i-j-k and j-k-l. More... | |
tuple | calcBondLengthsAndAngleCos (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos) |
float | calcBondAngleCos (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, float r_ij, float r_jk) |
Calculates the cosine of the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k. More... | |
float | calcBondAngleCos (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos) |
Calculates the cosine of the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k. More... | |
float | calcDihedralAngleCos (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom1_pos, Math.Vector3D ctr_atom2_pos, Math.Vector3D term_atom2_pos) |
Calculates the cosine of the dihedral angle \( \Phi_{ijkl} \) between the planes defined by the atom triplets i-j-k and j-k-l. More... | |
float | calcMMFF94ElectrostaticGradient (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, Math.Vector3D atom1_grad, Math.Vector3D atom2_grad, float atom1_chg, float atom2_chg, float scale_fact, float de_const, float dist_expo) |
Calculates the electrostatic interaction energy gradient \( \nabla EQ_{ij} \) for the atom pair i-j. More... | |
float | calcMMFF94StretchBendGradient (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D term_atom1_grad, Math.Vector3D ctr_atom_grad, Math.Vector3D term_atom2_grad, float ijk_force_const, float kji_force_const, float ref_angle, float ref_length1, float ref_length2) |
Calculates the stretch-bend interaction energy gradient \( \nabla EBA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94AngleBendingGradient (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D term_atom1_grad, Math.Vector3D ctr_atom_grad, Math.Vector3D term_atom2_grad, bool linear, float force_const, float ref_angle) |
Calculates the angle bending interaction energy gradient \( \nabla EA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94OutOfPlaneBendingGradient (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D oop_atom_pos, Math.Vector3D term_atom1_grad, Math.Vector3D ctr_atom_grad, Math.Vector3D term_atom2_grad, Math.Vector3D oop_atom_grad, float force_const) |
Calculates the out-of-plane bending interaction energy gradient \( \nabla EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k. More... | |
float | calcMMFF94BondStretchingGradient (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, Math.Vector3D atom1_grad, Math.Vector3D atom2_grad, float force_const, float ref_length) |
Calculates the bond stretching interaction energy gradient \( \nabla EB_{ij} \) for the bond i-j. More... | |
float | calcElasticPotentialGradient (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, Math.Vector3D atom1_grad, Math.Vector3D atom2_grad, float force_const, float ref_length) |
Calculates the elastic potential energy gradient \( \nabla E_{ij} \) for a pair of atoms i-j. More... | |
float | calcMMFF94TorsionGradient (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom1_pos, Math.Vector3D ctr_atom2_pos, Math.Vector3D term_atom2_pos, Math.Vector3D term_atom1_grad, Math.Vector3D ctr_atom1_grad, Math.Vector3D ctr_atom2_grad, Math.Vector3D term_atom2_grad, float tor_param1, float tor_param2, float tor_param3) |
Calculates the torsion interaction energy gradient \( \nabla ET_{ijkl} \) for the central bond j-k and the connected bonds i-j and k-l. More... | |
float | calcMMFF94VanDerWaalsGradient (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, Math.Vector3D atom1_grad, Math.Vector3D atom2_grad, float e_IJ, float r_IJ, float r_IJ_7) |
Calculates the van der Waals interaction energy gradient \( \nabla E_{vdW_{ij}} \) for the atom pair i-j. More... | |
float | calcMMFF94ElectrostaticEnergy (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, float atom1_chg, float atom2_chg, float scale_fact, float de_const, float dist_expo) |
Calculates the electrostatic interaction energy \( EQ_{ij} \) for the atom pair i-j. More... | |
float | calcMMFF94StretchBendEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, float ijk_force_const, float kji_force_const, float ref_angle, float ref_length1, float ref_length2) |
Calculates the stretch-bend interaction energy \( EBA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94StretchBendEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, float r_ij, float r_jk, float ijk_force_const, float kji_force_const, float ref_angle, float ref_length1, float ref_length2) |
Calculates the stretch-bend interaction energy \( EBA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94AngleBendingEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, bool linear, float force_const, float ref_angle) |
Calculates the angle bending interaction energy \( EA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94AngleBendingEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, float r_ij, float r_jk, bool linear, float force_const, float ref_angle) |
Calculates the angle bending interaction energy \( EA_{ijk} \) for two bonds i-j and j-k. More... | |
float | calcMMFF94OutOfPlaneBendingEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D oop_atom_pos, float force_const) |
Calculates the out-of-plane bending interaction energy \( EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k. More... | |
float | calcMMFF94OutOfPlaneBendingEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom_pos, Math.Vector3D term_atom2_pos, Math.Vector3D oop_atom_pos, float r_jl, float force_const) |
Calculates the out-of-plane bending interaction energy \( EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k. More... | |
float | calcMMFF94BondStretchingEnergy (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, float force_const, float ref_length) |
Calculates the bond stretching interaction energy \( EB_{ij} \) for the bond i-j. More... | |
float | calcElasticPotentialEnergy (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, float force_const, float ref_length) |
Calculates the energy \( E_{ij} \) of an elastic potential applied on a pair of atoms i-j. More... | |
float | calcMMFF94TorsionEnergy (Math.Vector3D term_atom1_pos, Math.Vector3D ctr_atom1_pos, Math.Vector3D ctr_atom2_pos, Math.Vector3D term_atom2_pos, float tor_param1, float tor_param2, float tor_param3) |
Calculates the torsion interaction energy \( ET_{ijkl} \) for the central bond j-k and the connected bonds i-j and k-l. More... | |
float | calcMMFF94VanDerWaalsEnergy (Math.Vector3D atom1_pos, Math.Vector3D atom2_pos, float e_IJ, float r_IJ, float r_IJ_7) |
Calculates the van der Waals interaction energy \( E_{vdW_{ij}} \) for the atom pair i-j. More... | |
float | calcMMFF94ElectrostaticEnergy (float r_ij, float atom1_chg, float atom2_chg, float scale_fact, float de_const, float dist_expo) |
Calculates the electrostatic interaction energy \( EQ_{ij} \) for the atom pair i-j. More... | |
float | calcMMFF94BondStretchingEnergy (float r_ij, float force_const, float ref_length) |
Calculates the bond stretching interaction energy \( EB_{ij} \) for the bond i-j. More... | |
float | calcMMFF94VanDerWaalsEnergy (float r_ij, float e_IJ, float r_IJ, float r_IJ_7) |
Calculates the van der Waals interaction energy \( E_{vdW_{ij}} \) for the atom pair i-j. More... | |
Contains classes and functions related to molecular force fields.
None CDPL.ForceField.clearMMFF94Charge | ( | Chem.Atom | atom | ) |
atom |
bool CDPL.ForceField.hasMMFF94Charge | ( | Chem.Atom | atom | ) |
atom |
float CDPL.ForceField.getMMFF94Charge | ( | Chem.Atom | atom | ) |
atom |
None CDPL.ForceField.setMMFF94Charge | ( | Chem.Atom | atom, |
float | charge | ||
) |
atom | |
charge |
int CDPL.ForceField.perceiveUFFType | ( | Chem.Atom | atom, |
Chem.MolecularGraph | molgraph | ||
) |
atom | |
molgraph |
None CDPL.ForceField.clearUFFType | ( | Chem.Atom | atom | ) |
atom |
bool CDPL.ForceField.hasUFFType | ( | Chem.Atom | atom | ) |
atom |
int CDPL.ForceField.getUFFType | ( | Chem.Atom | atom | ) |
atom |
None CDPL.ForceField.setUFFType | ( | Chem.Atom | atom, |
int | type | ||
) |
atom | |
type |
None CDPL.ForceField.clearMMFF94SymbolicType | ( | Chem.Atom | atom | ) |
atom |
bool CDPL.ForceField.hasMMFF94SymbolicType | ( | Chem.Atom | atom | ) |
atom |
str CDPL.ForceField.getMMFF94SymbolicType | ( | Chem.Atom | atom | ) |
atom |
None CDPL.ForceField.setMMFF94SymbolicType | ( | Chem.Atom | atom, |
str | type | ||
) |
atom | |
type |
None CDPL.ForceField.clearMMFF94NumericType | ( | Chem.Atom | atom | ) |
atom |
bool CDPL.ForceField.hasMMFF94NumericType | ( | Chem.Atom | atom | ) |
atom |
int CDPL.ForceField.getMMFF94NumericType | ( | Chem.Atom | atom | ) |
atom |
None CDPL.ForceField.setMMFF94NumericType | ( | Chem.Atom | atom, |
int | type | ||
) |
atom | |
type |
None CDPL.ForceField.clearMMFF94TypeIndex | ( | Chem.Bond | bond | ) |
bond |
bool CDPL.ForceField.hasMMFF94TypeIndex | ( | Chem.Bond | bond | ) |
bond |
int CDPL.ForceField.getMMFF94TypeIndex | ( | Chem.Bond | bond | ) |
bond |
None CDPL.ForceField.setMMFF94TypeIndex | ( | Chem.Bond | bond, |
int | type_idx | ||
) |
bond | |
type_idx |
float CDPL.ForceField.calcElasticPotentialGradient | ( | ElasticPotentialList | list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
list | |
coords | |
grad |
float CDPL.ForceField.calcElasticPotentialEnergy | ( | ElasticPotentialList | list, |
Math.Vector3DArray | coords | ||
) |
list | |
coords |
float CDPL.ForceField.calcElasticPotentialGradient | ( | ElasticPotential | pot, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
pot | |
coords | |
grad |
float CDPL.ForceField.calcElasticPotentialEnergy | ( | ElasticPotential | pot, |
Math.Vector3DArray | coords | ||
) |
pot | |
coords |
float CDPL.ForceField.calcMMFF94AngleBendingGradient | ( | MMFF94AngleBendingInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94AngleBendingEnergy | ( | MMFF94AngleBendingInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94AngleBendingGradient | ( | MMFF94AngleBendingInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94AngleBendingEnergy | ( | MMFF94AngleBendingInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
float CDPL.ForceField.calcMMFF94BondStretchingGradient | ( | MMFF94BondStretchingInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94BondStretchingEnergy | ( | MMFF94BondStretchingInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94BondStretchingGradient | ( | MMFF94BondStretchingInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94BondStretchingEnergy | ( | MMFF94BondStretchingInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
float CDPL.ForceField.calcMMFF94ElectrostaticGradient | ( | MMFF94ElectrostaticInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94ElectrostaticEnergy | ( | MMFF94ElectrostaticInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94ElectrostaticGradient | ( | MMFF94ElectrostaticInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94ElectrostaticEnergy | ( | MMFF94ElectrostaticInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
None CDPL.ForceField.filterInteractions | ( | MMFF94InteractionData | ia_data, |
MMFF94InteractionData | filtered_ia_data, | ||
Util.BitSet | inc_atom_mask | ||
) |
ia_data | |
filtered_ia_data | |
inc_atom_mask |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingGradient | ( | MMFF94OutOfPlaneBendingInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingEnergy | ( | MMFF94OutOfPlaneBendingInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingGradient | ( | MMFF94OutOfPlaneBendingInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingEnergy | ( | MMFF94OutOfPlaneBendingInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
float CDPL.ForceField.calcMMFF94StretchBendGradient | ( | MMFF94StretchBendInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94StretchBendEnergy | ( | MMFF94StretchBendInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94StretchBendGradient | ( | MMFF94StretchBendInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94StretchBendEnergy | ( | MMFF94StretchBendInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
float CDPL.ForceField.calcMMFF94TorsionGradient | ( | MMFF94TorsionInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94TorsionEnergy | ( | MMFF94TorsionInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94TorsionGradient | ( | MMFF94TorsionInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94TorsionEnergy | ( | MMFF94TorsionInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
float CDPL.ForceField.calcMMFF94VanDerWaalsGradient | ( | MMFF94VanDerWaalsInteractionList | ia_list, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
ia_list | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94VanDerWaalsEnergy | ( | MMFF94VanDerWaalsInteractionList | ia_list, |
Math.Vector3DArray | coords | ||
) |
ia_list | |
coords |
float CDPL.ForceField.calcMMFF94VanDerWaalsGradient | ( | MMFF94VanDerWaalsInteraction | iaction, |
Math.Vector3DArray | coords, | ||
Math.Vector3DArray | grad | ||
) |
iaction | |
coords | |
grad |
float CDPL.ForceField.calcMMFF94VanDerWaalsEnergy | ( | MMFF94VanDerWaalsInteraction | iaction, |
Math.Vector3DArray | coords | ||
) |
iaction | |
coords |
None CDPL.ForceField.assignMMFF94BondTypeIndices | ( | Chem.MolecularGraph | molgraph, |
bool | strict, | ||
bool | overwrite | ||
) |
molgraph | |
strict | |
overwrite |
None CDPL.ForceField.calcMMFF94AtomCharges | ( | Chem.MolecularGraph | molgraph, |
bool | strict, | ||
bool | overwrite | ||
) |
molgraph | |
strict | |
overwrite |
None CDPL.ForceField.assignMMFF94AtomTypes | ( | Chem.MolecularGraph | molgraph, |
bool | strict, | ||
bool | overwrite | ||
) |
molgraph | |
strict | |
overwrite |
None CDPL.ForceField.assignUFFAtomTypes | ( | Chem.MolecularGraph | molgraph, |
bool | overwrite | ||
) |
molgraph | |
overwrite |
Chem.FragmentList CDPL.ForceField.perceiveMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph | ) |
molgraph |
Chem.FragmentList CDPL.ForceField.perceiveMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph, |
bool | overwrite | ||
) |
molgraph | |
overwrite |
None CDPL.ForceField.clearMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph | ) |
molgraph |
bool CDPL.ForceField.hasMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph | ) |
molgraph |
Chem.FragmentList CDPL.ForceField.getMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph | ) |
molgraph |
None CDPL.ForceField.setMMFF94AromaticRings | ( | Chem.MolecularGraph | molgraph, |
Chem.FragmentList | rings | ||
) |
molgraph | |
rings |
float CDPL.ForceField.calcDistance | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos | ||
) |
Calculates the distance \( r_{ij} \) between two atoms i and j.
\( r_{ij} = |\vec{v_{ij}}| \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
float CDPL.ForceField.calcSquaredDistance | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos | ||
) |
Calculates the squared distance \( r_{ij}^2 \) between two atoms i and j.
\( r_{ij}^2 = |\vec{v_{ij}}|^2 \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
tuple CDPL.ForceField.calcBondLengthsAndAngle | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos | ||
) |
term_atom1_pos | |
ctr_atom_pos | |
term_atom2_pos |
float CDPL.ForceField.calcBondAngle | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | r_ij, | ||
float | r_jk | ||
) |
Calculates the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k.
\( \vartheta_{ijk} = \arccos(\frac{\vec{v_{ij}} \cdot \vec{v_{jk}}}{|\vec{v_{ij}}| \: |\vec{v_{jk}}|}) \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
r_ij | The length of the bond between atom i and j. |
r_jk | The length of the bond between atom j and k. |
float CDPL.ForceField.calcBondAngle | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos | ||
) |
Calculates the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k.
\( \vartheta_{ijk} = \arccos(\frac{\vec{v_{ij}} \cdot \vec{v_{jk}}}{|\vec{v_{ij}}| \: |\vec{v_{jk}}|}) \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
float CDPL.ForceField.calcOutOfPlaneAngle | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | oop_atom_pos, | ||
float | r_jl | ||
) |
Calculates the out-of-plane angle \( \chi_{ijk;l} \) between the bond j-l and the plane defined by the atoms i-j-k.
\( \chi_{ijk;l} = \frac{\pi}{2} - \arccos(\frac{\vec{n_{ijk}} \cdot \vec{v_{jl}}}{|\vec{n_{ijk}}| \: |\vec{v_{jl}}|}) \)
where
\( \vec{v_{ji}} = \vec{p_i} - \vec{p_j} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{v_{jl}} = \vec{p_l} - \vec{p_j} \)
\( \vec{n_{ijk}} = \vec{v_{ji}} \times \vec{v_{jk}} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
\( \vec{p_l} \) = coordinates of atom l.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
oop_atom_pos | The position \( \vec{p_l} \) of the out-of-plane atom l. |
r_jl | The length of the bond between atom j and atom l. |
float CDPL.ForceField.calcDistanceDerivatives | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
Math.Vector3D | atom1_deriv, | ||
Math.Vector3D | atom2_deriv | ||
) |
Calculates the partial derivatives \( \frac{\partial r_{ij}}{\partial \vec{p_x}} \) of the distance \( r_{ij} \) between two atoms i and j.
\( \frac{\partial r_{ij}}{\partial \vec{p_i}} = \frac{-\vec{v_{ij}}}{r_{ij}} \)
\( \frac{\partial r_{ij}}{\partial \vec{p_j}} = \frac{\vec{v_{ij}}}{r_{ij}} \)
\( r_{ij} = |\vec{v_{ij}}| \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
atom1_deriv | Output variable for the calculated partial derivative \( \frac{\partial r_{ij}}{\partial \vec{p_i}} \) at the given atom positions. |
atom2_deriv | Output variable for the calculated partial derivative \( \frac{\partial r_{ij}}{\partial \vec{p_j}} \) at the given atom positions. |
float CDPL.ForceField.calcBondAngleCosDerivatives | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | term_atom1_deriv, | ||
Math.Vector3D | ctr_atom_deriv, | ||
Math.Vector3D | term_atom2_deriv | ||
) |
Calculates the partial derivatives \( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_x}} \) of the of the cosine of the angle \( \vartheta_{ijk} \) between the bonds i-j and j-k.
\( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_i}} = \frac{\vec{v_{jk}}}{r_{ji} \: r_{jk}} - \frac{\vec{v_{ji}} \: (\vec{v_{ji}} \cdot \vec{v_{jk}})}{r_{ji}^3 \: r_{jk}} \)
\( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_k}} = \frac{\vec{v_{ji}}}{r_{ji} \: r_{jk}} - \frac{\vec{v_{jk}} \: (\vec{v_{ji}} \cdot \vec{v_{jk}})}{r_{ji} \: r_{jk}^3} \)
\( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_j}} = -(\frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_i}} + \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_k}}) \)
\( \cos(\vartheta_{ijk}) = \frac{\vec{v_{ij}} \cdot \vec{v_{jk}}}{r_{ij} \: r_{jk}} \)
where
\( \vec{v_{ji}} = \vec{p_i} - \vec{p_j} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( r_{ji} = |\vec{v_{ji}}| \)
\( r_{jk} = |\vec{v_{jk}}| \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
term_atom1_pos | The position \( \vec{p_i} \) of atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of atom k. |
term_atom1_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_i}} \) at the given atom positions. |
ctr_atom_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_j}} \) at the given atom positions. |
term_atom2_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\vartheta_{ijk})}{\partial \vec{p_k}} \) at the given atom positions. |
float CDPL.ForceField.calcOutOfPlaneAngleCosDerivatives | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | oop_atom_pos, | ||
Math.Vector3D | term_atom1_deriv, | ||
Math.Vector3D | ctr_atom_deriv, | ||
Math.Vector3D | term_atom2_deriv, | ||
Math.Vector3D | oop_atom_deriv | ||
) |
Calculates the partial derivatives \( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_x}} \) of the cosine of the angle \( \omega_{ijk;l} \) between the bond j-l and the normal of the plane defined by the atoms i-j-k.
\( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_i}} = \frac{\vec{v_{jk}} \times \vec{v_{jl}}}{|\vec{n_{ijk}}| \: r_{jl}} - \cos(\omega_{ijk;l}) \: \frac{M_1 \cdot \vec{n_{ijk}}}{|\vec{n_{ijk}}|^2} \)
\( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_k}} = \frac{\vec{v_{jl}} \times \vec{v_{ji}}}{|\vec{n_{ijk}}| \: r_{jl}} - \cos(\omega_{ijk;l}) \: \frac{M_2 \cdot \vec{n_{ijk}}}{|\vec{n_{ijk}}|^2} \)
\( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_l}} = \frac{-1}{|\vec{n_{ijk}}| \: r_{jl}} \: (\frac{\vec{v_{jl}} (\vec{n_{ijk}} \cdot \vec{v_{jl}})}{r_{jl}^2} + \vec{r_{kl}} \times \vec{v_{il}} + \vec{v_{jl}} \times \vec{v_{ji}} + \vec{v_{jk}} \times \vec{v_{jl}}) \)
\( \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_j}} = -(\frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_i}} + \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_k}} + \frac{\partial \cos(\omega_{ijk;l})}{\partial \vec{p_l}}) \)
\( \cos(\omega_{ijk;l}) = \frac{\vec{n_{ijk}} \cdot \vec{v_{jl}}}{|\vec{n_{ijk}}| \: r_{jl}} \)
where
\( M_1 = \begin{vmatrix} 0 & -\vec{v_{jk}}.z & \vec{v_{jk}}.y \\ \vec{v_{jk}}.z & 0 & -\vec{v_{jk}}.x \\ -\vec{v_{jk}}.y & \vec{v_{jk}}.x & 0 \end{vmatrix} \)
\( M_2 = \begin{vmatrix} 0 & \vec{v_{ji}}.z & -\vec{v_{ji}}.y \\ -\vec{v_{ji}}.z & 0 & \vec{v_{ji}}.x \\ \vec{v_{ji}}.y & -\vec{v_{ji}}.x & 0 \end{vmatrix} \)
\( \vec{v_{ji}} = \vec{p_i} - \vec{p_j} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{v_{jl}} = \vec{p_l} - \vec{p_j} \)
\( \vec{r_{kl}} = \vec{p_l} - \vec{p_k} \)
\( \vec{v_{il}} = \vec{p_l} - \vec{p_i} \)
\( \vec{n_{ijk}} = \vec{v_{ji}} \times \vec{v_{jk}} \)
\( r_{jl} = |\vec{v_{jl}}| \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
\( \vec{p_l} \) = coordinates of atom l.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
oop_atom_pos | The position \( \vec{p_l} \) of the out-of-plane atom l. |
term_atom1_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\omega_{ijkl})}{\partial \vec{p_i}} \) at the given atom positions. |
ctr_atom_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\omega_{ijkl})}{\partial \vec{p_j}} \) at the given atom positions. |
term_atom2_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\omega_{ijkl})}{\partial \vec{p_k}} \) at the given atom positions. |
oop_atom_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\omega_{ijkl})}{\partial \vec{p_l}} \) at the given atom positions. |
float CDPL.ForceField.calcDihedralAngleCosDerivatives | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom1_pos, | ||
Math.Vector3D | ctr_atom2_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | term_atom1_deriv, | ||
Math.Vector3D | ctr_atom1_deriv, | ||
Math.Vector3D | ctr_atom2_deriv, | ||
Math.Vector3D | term_atom2_deriv | ||
) |
Calculates the partial derivatives \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_x}} \) of the cosine of the angle \( \Phi_{ijkl} \) between the planes defined by the atom triplets i-j-k and j-k-l.
\( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_i}} = \vec{v_{jk}} \times \vec{a} \)
\( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_j}} = \vec{r_{ki}} \times \vec{a} - \vec{v_{lk}} \times \vec{b} \)
\( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_l}} = \vec{v_{jk}} \times \vec{b} \)
\( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_k}} = -(\frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_i}} + \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_j}} + \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_l}}) \)
\( \cos(\Phi_{ijkl}) = \frac{\vec{n_{ijk}} \cdot \vec{n_{jkl}}}{|\vec{n_{ijk}}| \: |\vec{n_{jkl}}|} \)
where
\( \vec{v_{ji}} = \vec{p_i} - \vec{p_j} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{v_{lk}} = \vec{p_k} - \vec{p_l} \)
\( \vec{r_{ki}} = \vec{p_i} - \vec{p_k} \)
\( \vec{n_{ijk}} = \vec{v_{ji}} \times \vec{v_{jk}} \)
\( \vec{n_{jkl}} = \vec{v_{jk}} \times \vec{v_{lk}} \)
\( \vec{a} = \frac{\frac{\vec{n_{jkl}}}{|\vec{n_{jkl}}|} - \cos(\Phi_{ijkl}) \: \frac{\vec{n_{ijk}}}{|\vec{n_{ijk}}|}}{|\vec{n_{ijk}}|} \)
\( \vec{b} = \frac{\frac{\vec{n_{ijk}}}{|\vec{n_{ijk}}|} - \cos(\Phi_{ijkl}) \: \frac{\vec{n_{jkl}}}{|\vec{n_{jkl}}|}}{|\vec{n_{jkl}}|} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
\( \vec{p_l} \) = coordinates of atom l.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom1_pos | The position \( \vec{p_j} \) of the central atom j. |
ctr_atom2_pos | The position \( \vec{p_k} \) of the central atom k. |
term_atom2_pos | The position \( \vec{p_l} \) of the terminal atom l. |
term_atom1_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_i}} \) at the given atom positions. |
ctr_atom1_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_j}} \) at the given atom positions. |
ctr_atom2_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_k}} \) at the given atom positions. |
term_atom2_deriv | Output variable for the calculated partial derivative \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_l}} \) at the given atom positions. |
tuple CDPL.ForceField.calcBondLengthsAndAngleCos | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos | ||
) |
term_atom1_pos | |
ctr_atom_pos | |
term_atom2_pos |
float CDPL.ForceField.calcBondAngleCos | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | r_ij, | ||
float | r_jk | ||
) |
Calculates the cosine of the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k.
\( \cos(\vartheta_{ijk}) = \frac{\vec{v_{ij}} \cdot \vec{v_{jk}}}{|\vec{v_{ij}}| \: |\vec{v_{jk}}|} \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
r_ij | The length of the bond between atom i and j. |
r_jk | The length of the bond between atom j and k. |
float CDPL.ForceField.calcBondAngleCos | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos | ||
) |
Calculates the cosine of the bond angle \( \vartheta_{ijk} \) between the two bonds i-j and j-k.
\( \cos(\vartheta_{ijk}) = \frac{\vec{v_{ij}} \cdot \vec{v_{jk}}}{|\vec{v_{ij}}| \: |\vec{v_{jk}}|} \)
where
\( \vec{v_{ij}} = \vec{p_j} - \vec{p_i} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of the terminal atom k. |
float CDPL.ForceField.calcDihedralAngleCos | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom1_pos, | ||
Math.Vector3D | ctr_atom2_pos, | ||
Math.Vector3D | term_atom2_pos | ||
) |
Calculates the cosine of the dihedral angle \( \Phi_{ijkl} \) between the planes defined by the atom triplets i-j-k and j-k-l.
\( \cos(\Phi_{ijkl}) = \frac{\vec{n_{ijk}} \cdot \vec{n_{jkl}}}{|\vec{n_{ijk}}| \: |\vec{n_{jkl}}|} \)
where
\( \vec{v_{ji}} = \vec{p_i} - \vec{p_j} \)
\( \vec{v_{jk}} = \vec{p_k} - \vec{p_j} \)
\( \vec{v_{lk}} = \vec{p_k} - \vec{p_l} \)
\( \vec{n_{ijk}} = \vec{v_{ji}} \times \vec{v_{jk}} \)
\( \vec{n_{jkl}} = \vec{v_{jk}} \times \vec{v_{lk}} \)
\( \vec{p_i} \) = coordinates of atom i.
\( \vec{p_j} \) = coordinates of atom j.
\( \vec{p_k} \) = coordinates of atom k.
\( \vec{p_l} \) = coordinates of atom l.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom1_pos | The position \( \vec{p_j} \) of the central atom j. |
ctr_atom2_pos | The position \( \vec{p_k} \) of the central atom k. |
term_atom2_pos | The position \( \vec{p_l} \) of the terminal atom l. |
float CDPL.ForceField.calcMMFF94ElectrostaticGradient | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
Math.Vector3D | atom1_grad, | ||
Math.Vector3D | atom2_grad, | ||
float | atom1_chg, | ||
float | atom2_chg, | ||
float | scale_fact, | ||
float | de_const, | ||
float | dist_expo | ||
) |
Calculates the electrostatic interaction energy gradient \( \nabla EQ_{ij} \) for the atom pair i-j.
Energy function:
\( EQ_{ij} = S \: 332.0716 \: \frac{q_i \: q_j}{D \: (R_{ij} + \delta)^n} \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EQ_{ij}}{\partial \vec{p_x}} = \frac{\partial EQ_{ij}}{\partial R_{ij}} \: \frac{\partial R_{ij}}{\partial \vec{p_x}} \)
\( \frac{\partial EQ_{ij}}{\partial R_{ij}} = -S \: 332.0716 \: n \: \frac{q_i \: q_j}{D \: (R_{ij} + \delta)^{n + 1}} \)
for the calculation of the partial derivatives \( \frac{\partial R_{ij}}{\partial \vec{p_x}} \) see calcDistanceDerivatives().
where
\( S \) = a scaling factor depending on the topological distance of i-j.
\( q_i \) and \( q_j \) = partial atomic charges.
\( D \) = dielectric constant.
\( R_{ij} \) = interatomic distance (Å).
\( \delta \) = electrostatic buffering constant (0.05 Å).
\( n \) = exponent (normally 1, but can be 2 for distance-dependent dielectric constant).
\( \vec{p_x} \) = coordinates of the involved atoms i and j.
Note: 1-4 electrostatic interactions are scaled by 0.75 (thus, the electrostatic gradient term becomes \( EQ_{14} \: 0.75 \)).
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
atom2_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
atom1_chg | The partial atom charge \( q_i \) of atom i. |
atom2_chg | The partial atom charge \( q_j \) of atom j. |
scale_fact | The scaling factor for \( S \) depending on the topological i-j distance. |
de_const | The dielectric constant \( D \). |
dist_expo | The exponent \( n \). |
float CDPL.ForceField.calcMMFF94StretchBendGradient | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | term_atom1_grad, | ||
Math.Vector3D | ctr_atom_grad, | ||
Math.Vector3D | term_atom2_grad, | ||
float | ijk_force_const, | ||
float | kji_force_const, | ||
float | ref_angle, | ||
float | ref_length1, | ||
float | ref_length2 | ||
) |
Calculates the stretch-bend interaction energy gradient \( \nabla EBA_{ijk} \) for two bonds i-j and j-k.
Energy function:
\( EBA_{ijk} = 2.51210 \: (kba_{IJK} \: \Delta r_{ij} + kba_{KJI} \: \Delta r_{kj}) \: \Delta \vartheta_{ijk} \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EBA_{ijk}}{\partial \vec{p_x}} = 2.5121 \: \Delta \vartheta_{ijk} \: (kba_{IJK} \: \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} + kba_{KJI} \: \frac{\partial \Delta r_{kj}}{\partial \vec{p_x}}) + 2.5121 \: \frac{\partial \Delta \vartheta_{ijk}}{\partial \vec{p_x}} \: (kba_{IJK} \: \Delta r_{ij} + kba_{KJI} \: \Delta r_{kj}) \)
\( \frac{\partial \Delta \vartheta_{ijk}}{\partial \vec{p_x}} = \frac{\partial \Delta \vartheta_{ijk}}{\partial \vartheta_{ijk}} \: \frac{\partial \vartheta_{ijk}}{\partial \cos(\vartheta_{ijk})} \: \frac{\partial \cos(\vartheta_{ijk})}{\vec{p_x}} \)
\( \frac{\partial \Delta \vartheta_{ijk}}{\partial \vartheta_{ijk}} = \frac{180}{\pi} \)
\( \frac{\partial \vartheta_{ijk}}{\partial \cos(\vartheta_{ijk})} = \frac{-1}{\sqrt{1 - \cos(\vartheta_{ijk})^2}} \)
for the calculation of the partial derivatives \( \frac{\partial \cos(\vartheta_{ijk})}{\vec{p_x}} \) see calcBondAngleCosDerivatives() and for the calculation of \( \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} \) see calcDistanceDerivatives().
where
\( kba_{IJK} \) = force constant in \( \frac{md}{rad} \) for i-j stretch coupled to i-j-k bend.
\( kba_{KJI} \) = force constant in \( \frac{md}{rad} \) for k-j stretch coupled to i-j-k bend.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J.
\( \Delta r_{kj} \) = \( r_{kj} - r_{KJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms k and j of types K and J.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} \: \frac{180}{\pi} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees.
\( \vec{p_x} \) = coordinates of the involved atoms i, j and k.
Currently, stretch-bend interactions are omitted when the i-j-k interaction corresponds to a linear bond angle.
term_atom1_pos | The position \( \vec{p_i} \) of atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of atom k. |
term_atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
ctr_atom_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
term_atom2_grad | The output variable storing the accumulated energy gradient contributions for atom k. |
ijk_force_const | The stretch-bend force constant \( kba_{IJK} \). |
kji_force_const | The stretch-bend force constant \( kba_{KJI} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
ref_length1 | The reference bond length \( r_{IJ}^0 \). |
ref_length2 | The reference bond length \( r_{KJ}^0 \). |
float CDPL.ForceField.calcMMFF94AngleBendingGradient | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | term_atom1_grad, | ||
Math.Vector3D | ctr_atom_grad, | ||
Math.Vector3D | term_atom2_grad, | ||
bool | linear, | ||
float | force_const, | ||
float | ref_angle | ||
) |
Calculates the angle bending interaction energy gradient \( \nabla EA_{ijk} \) for two bonds i-j and j-k.
Energy function employed for the non-linear case:
\( EA_{ijk} = 0.043844 \: \frac{ka_{IJK}}{2} \: \Delta \vartheta_{ijk}^2 \: (1 + cb \: \Delta \vartheta_{ijk}) \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EA_{ijk}}{\partial \vec{p_x}} = \frac{\partial EA_{ijk}}{\partial \vartheta_{ijk}} \: \frac{\partial \vartheta_{ijk}}{\partial \cos(\vartheta_{ijk})} \: \frac{\partial \cos(\vartheta_{ijk})}{\vec{p_x}} \)
\( \frac{\partial EA_{ijk}}{\partial \vartheta_{ijk}} = -ka_{IJK} \: (86.58992538 \: \vartheta_{ijk}^2 - 3.022558594 \: \vartheta_{ijk} \: \vartheta_{IJK}^0 - 143.9313616 \: \vartheta_{ijk} + 0.02637679965 \: \vartheta_{IJK}^{0^2} + 2.512076157 \: \vartheta_{IJK}^0) \)
\( \frac{\partial \vartheta_{ijk}}{\partial \cos(\vartheta_{ijk})} = \frac{-1}{\sqrt{1 - \cos(\vartheta_{ijk})^2}} \)
for the calculation of the partial derivatives \( \frac{\partial \cos(\vartheta_{ijk})}{\vec{p_x}} \) see calcBondAngleCosDerivatives().
For linear or near-linear bond angles such as those which occur in alkynes, nitriles, isonitriles, azides, and diazo compounds, the energy function form used in DREIDING and UFF is employed:
\( EA_{ijk} = 143.9325 \: ka_{IJK} \:(1 + \cos(\vartheta_{ijk})) \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EA_{ijk}}{\partial \vec{p_x}} = 143.9325 \: ka_{IJK} \: \frac{\partial \cos(\vartheta_{ijk})}{\vec{p_x}} \)
where
\( ka_{IJK} \) = angle bending force constant in \( \frac{md Ang}{rad^2} \) for the angle between atoms i, j and k of atom types I, J and K.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees.
\( cb \) = \( -0.007 \: deg^{-1} \), the "cubic-bend" constant.
\( \vec{p_x} \) = coordinates of the involved atoms i, j and k.
term_atom1_pos | The position \( \vec{p_i} \) of atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of atom k. |
term_atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
ctr_atom_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
term_atom2_grad | The output variable storing the accumulated energy gradient contributions for atom k. |
linear | If True , the bond angle is linear. |
force_const | The angle bending force constant \( ka_{IJK} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingGradient | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | oop_atom_pos, | ||
Math.Vector3D | term_atom1_grad, | ||
Math.Vector3D | ctr_atom_grad, | ||
Math.Vector3D | term_atom2_grad, | ||
Math.Vector3D | oop_atom_grad, | ||
float | force_const | ||
) |
Calculates the out-of-plane bending interaction energy gradient \( \nabla EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k.
Energy function:
\( EOOP_{ijk;l} = 0.043844 \: \frac{koop_{IJK \colon L}}{2} \: (\chi_{ijk;l} \: \frac{180}{\pi})^2 \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EOOP_{ijk;l}}{\partial \vec{p_x}} = \frac{\partial EOOP_{ijk;l}}{\partial \chi_{ijk;l}} \: \frac{\partial \chi_{ijk;l}}{\partial \cos(\alpha_{ijk;l})} \: \frac{\partial \cos(\alpha_{ijk;l})}{\partial \vec{p_x}} \)
\( \frac{\partial EOOP_{ijk;l}}{\partial \chi_{ijk;l}} = 0.043844 \: (\frac{180}{\pi})^2 \: \chi_{ijk;l} \: koop_{IJK \colon L} \)
\( \chi_{ijk;l} = \frac{\pi}{2} - \alpha_{ijk;l} \)
\( \frac{\partial \chi_{ijk;l}}{\partial \cos(\alpha_{ijk;l})} = \frac{-1}{\sqrt{1 - \cos(\alpha_{ijk;l})^2}} \)
for the calculation of the partial derivatives \( \frac{\partial \cos(\alpha_{ijk;l})}{\partial \vec{p_x}} \) see calcOutOfPlaneAngleCosDerivatives().
where
\( koop_{IJK \colon L} \) = out-of-plane bending force constant in \( \frac{md Ang}{rad^2} \).
\( \chi_{ijk;l} \) = angle in radians between the bond j-l and the plane i-j-k, where j is the central atom.
\( \vec{p_x} \) = coordinates of the involved atoms i, j, k and l.
term_atom1_pos | The position \( \vec{p_i} \) of atom i. |
ctr_atom_pos | The position \( \vec{p_j} \) of the central atom j. |
term_atom2_pos | The position \( \vec{p_k} \) of atom k. |
oop_atom_pos | The position \( \vec{p_l} \) of the out-of-plane atom l. |
term_atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
ctr_atom_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
term_atom2_grad | The output variable storing the accumulated energy gradient contributions for atom k. |
oop_atom_grad | The output variable storing the accumulated energy gradient contributions for atom l. |
force_const | The out-of-plane bending force constant \( koop_{IJK \colon L} \). |
float CDPL.ForceField.calcMMFF94BondStretchingGradient | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
Math.Vector3D | atom1_grad, | ||
Math.Vector3D | atom2_grad, | ||
float | force_const, | ||
float | ref_length | ||
) |
Calculates the bond stretching interaction energy gradient \( \nabla EB_{ij} \) for the bond i-j.
Energy function:
\( EB_{ij} = 143.9325 \: \frac{kb_{IJ}}{2} \: \Delta r_{ij}^2 \times (1 + cs \: \Delta r_{ij} + \frac{7}{12} \: cs^2 \: \Delta r_{ij}^2) \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial EB_{ij}}{\partial \vec{p_x}} = \frac{\partial EB_{ij}}{\partial \Delta r_{ij}} \: \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} \)
\( \frac{\partial EB_{ij}}{\partial \Delta r_{ij}} = (167.92125 \: \Delta r_{ij}^3 \: cs^2 + 215.89875 \: \Delta r_{ij}^2 \: cs + 143.9325 \: \Delta r_{ij}) \: kb_{IJ} \)
for the calculation of the partial derivatives \( \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} \) see calcDistanceDerivatives().
where
\( kb_{IJ} \) = the bond stretching force constant in \( \frac{md}{Ang} \) for bonded atoms i and j of types I and J.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J.
\( cs \) = \( -2 \: Ang^{-1} \), the "cubic stretch" constant.
\( \vec{p_x} \) = coordinates of the involved atoms i and j.
Note: throughout this description, the indices i, j, k, ... represent atoms; I, J, K, ... denote the corresponding numerical MMFF atom types (or, occasionally, the atomic species).
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
atom2_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
force_const | The bond stretching force constant \( kb_{IJ} \). |
ref_length | The reference bond length \( r_{IJ}^0 \). |
float CDPL.ForceField.calcElasticPotentialGradient | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
Math.Vector3D | atom1_grad, | ||
Math.Vector3D | atom2_grad, | ||
float | force_const, | ||
float | ref_length | ||
) |
Calculates the elastic potential energy gradient \( \nabla E_{ij} \) for a pair of atoms i-j.
Energy function:
\( E_{ij} = k_{ij} \: \Delta r_{ij}^2 \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial E_{ij}}{\partial \vec{p_x}} = \frac{\partial E_{ij}}{\partial \Delta r_{ij}} \: \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} \)
\( \frac{\partial E_{ij}}{\partial \Delta r_{ij}} = 2 \: \Delta r_{ij} \: k_{ij} \)
for the calculation of the partial derivatives \( \frac{\partial \Delta r_{ij}}{\partial \vec{p_x}} \) see calcDistanceDerivatives().
where
\( k_{ij} \) = the force constant of the elastic potential.
\( \Delta r_{ij} \) = \( r_{ij} - r_{ij}^0 \), the difference between actual and reference distance of the atoms i and j.
\( \vec{p_x} \) = coordinates of the atoms i and j.
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
atom2_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
force_const | The force constant \( k_{ij} \). |
ref_length | The reference distance \( r_{ij}^0 \). |
float CDPL.ForceField.calcMMFF94TorsionGradient | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom1_pos, | ||
Math.Vector3D | ctr_atom2_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | term_atom1_grad, | ||
Math.Vector3D | ctr_atom1_grad, | ||
Math.Vector3D | ctr_atom2_grad, | ||
Math.Vector3D | term_atom2_grad, | ||
float | tor_param1, | ||
float | tor_param2, | ||
float | tor_param3 | ||
) |
Calculates the torsion interaction energy gradient \( \nabla ET_{ijkl} \) for the central bond j-k and the connected bonds i-j and k-l.
Energy function:
\( ET_{ijkl} = 0.5 \: (V_1 \: (1 + \cos(\Phi_{ijkl})) + V_2 \: (1 - \cos(2 \: \Phi_{ijkl})) + V_3 \: (1 + \cos(3 \: \Phi_{ijkl}))) \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial ET_{ijkl}}{\partial \vec{p_x}} = \frac{\partial ET_{ijkl}}{\partial \Phi_{ijkl}} \: \frac{\partial \Phi_{ijkl}}{\partial \cos(\Phi_{ijkl})} \: \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_x}} \)
\( \frac{\partial ET_{ijkl}}{\partial \Phi_{ijkl}} = V_2 \: \sin(2 \: \Phi_{ijkl}) - 0.5 \: V_1 \: \sin(\Phi_{ijkl}) - 1.5 \: V_3 \: \sin(3 \: \Phi_{ijkl}) \)
\( \frac{\partial \Phi_{ijkl}}{\partial \cos(\Phi_{ijkl})} = \frac{-1}{\sqrt{1 - \cos(\Phi_{ijkl})^2}} \)
for the calculation of the partial derivatives \( \frac{\partial \cos(\Phi_{ijkl})}{\partial \vec{p_x}} \) see calcDihedralAngleCosDerivatives().
where
\( \Phi_{ijkl} \) is the i-j-k-l dihedral angle. The constants \( V_1 \), \( V_2 \) and \( V_3 \) depend on the atom types I, J, K and L for atoms i, j, k and l, where i-j, j-k and k-l are bonded pairs and i is not equal to l.
\( \vec{p_x} \) = coordinates of the involved atoms i, j, k and l.
term_atom1_pos | The position \( \vec{p_i} \) of the terminal atom i. |
ctr_atom1_pos | The position \( \vec{p_j} \) of the central atom j. |
ctr_atom2_pos | The position \( \vec{p_k} \) of the central atom k. |
term_atom2_pos | The position \( \vec{p_l} \) of the terminal atom l. |
term_atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
ctr_atom1_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
ctr_atom2_grad | The output variable storing the accumulated energy gradient contributions for atom k. |
term_atom2_grad | The output variable storing the accumulated energy gradient contributions for atom l. |
tor_param1 | The torsion parameter \( V_1 \). |
tor_param2 | The torsion parameter \( V_2 \). |
tor_param3 | The torsion parameter \( V_3 \). |
float CDPL.ForceField.calcMMFF94VanDerWaalsGradient | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
Math.Vector3D | atom1_grad, | ||
Math.Vector3D | atom2_grad, | ||
float | e_IJ, | ||
float | r_IJ, | ||
float | r_IJ_7 | ||
) |
Calculates the van der Waals interaction energy gradient \( \nabla E_{vdW_{ij}} \) for the atom pair i-j.
Energy function:
\( E_{vdW_{ij}} = \varepsilon_{IJ} \: (\frac{1.07 \: R_{IJ}^*}{(R_{ij} + 0.07 \: R_{IJ}^*)})^7 \: (\frac{1.12 \: R_{IJ}^{*^7}}{(R_{ij}^7 + 0.12 \: R_{IJ}^{*^7})} - 2) \;\;\;\; (1) \)
The partial derivatives with respect to the atom coordinates \( \vec{p_x} \) are calculated by:
\( \frac{\partial E_{vdW_{ij}}}{\partial \vec{p_x}} = \frac{\partial E_{vdW_{ij}}}{\partial R_{ij}} \: \frac{\partial R_{ij}}{\partial \vec{p_x}} \)
\( \frac{\partial E_{vdW_{ij}}}{\partial R_{ij}} = \frac{-R_{IJ}^{*^7} \: \varepsilon_{IJ}}{(R_{ij} + 0.07 \: R_{IJ}^*)^8 \: (R_{ij}^7 + 0.12 \: R_{IJ}^{*^7})^2} \: (-22.48094067 \: R_{ij}^{14} + 19.78322779 \: R_{ij}^7 \: R_{IJ}^{*^7} + 0.8812528743 \: R_{ij}^6 \: R_{IJ}^{*^8} + 1.186993667 \: R_{IJ}^{*^{14}}) \)
for the calculation of the partial derivatives \( \frac{\partial R_{ij}}{\partial \vec{p_x}} \) see calcDistanceDerivatives().
where
\( R_{ij} \) = the interatomic distance.
\( R_{II}^* = A_I \: \alpha_I^{PEXP} \;\;\;\; (2) \)
\( R_{IJ}^* = 0.5 \: (R_{II}^* + R_{JJ}^*) \: (1 + AFACT(1 - \exp(-BFACT \: \gamma_{IJ}^2))) \;\;\;\; (3) \)
\( \gamma_{IJ} = \frac{(R_{II}^* - R_{JJ}^*)}{(R_{II}^* + R_{JJ}^*)} \;\;\;\; (4) \)
\( \varepsilon_{IJ} = \frac{181.16 \: G_I \: GJ \: \alpha_I \: \alpha_J}{((\alpha_I / N_I)^{1/2} + (\alpha_J / N_J)^{1/2})} \: \frac{1}{R_{IJ}^{*6}} \;\;\;\; (5) \)
\( \vec{p_x} \) = coordinates of the involved atoms i and j.
MMFF employs a "Buffered 14-7" form (eq 1) together with an expression which relates the minimum-gradient separation \( R_{II}^* \) to the atomic polarizability \( \alpha_I \) (eq 2), a specially formulated combination rule (eqs 3, 4), and a Slater-Kirkwood expression for the well depth \( \varepsilon_{IJ} \) (eq 5): The first non-comment line in the parameter file "MMFFVDW.PAR" contains five floating point numbers which define the variables PEXP, AFACT, BFACT, DARAD, and DAEPS, respectively. PEXP (currently 0.25), AFACT (currently 0.2) and BFACT (currently 12.0) are used in the equations shown above; DARAD and DAEPS are used as follows:
When either i or j is a hydrogen-bond donor, MMFF uses the simple arithmetic mean \( 0.5 \: (R_{II}^* + R_{JJ}^*) \) instead of eq 3 to obtain \( R_{IJ}^* \). If the i-j interaction is a donor-acceptor interaction, MMFF also scales \( R_{IJ}^* \) as given by eq 3 by DARAD (currently 0.8) and \( \varepsilon_{IJ} \) as given by eq 5 by DAEPS (currently 0.5).
atom1_pos | The position \( \vec{p_i} \) of atom i. |
atom2_pos | The position \( \vec{p_j} \) of atom j. |
atom1_grad | The output variable storing the accumulated energy gradient contributions for atom i. |
atom2_grad | The output variable storing the accumulated energy gradient contributions for atom j. |
e_IJ | The precalculated value \( \varepsilon_{IJ} \). |
r_IJ | The precalculated value \( R_{IJ}^* \). |
r_IJ_7 | The precalculated value \( R_{IJ}^{*^7} \). |
float CDPL.ForceField.calcMMFF94ElectrostaticEnergy | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
float | atom1_chg, | ||
float | atom2_chg, | ||
float | scale_fact, | ||
float | de_const, | ||
float | dist_expo | ||
) |
Calculates the electrostatic interaction energy \( EQ_{ij} \) for the atom pair i-j.
\( EQ_{ij} = S \: 332.0716 \: \frac{q_i \: q_j}{D \: (R_{ij} + \delta)^n} \)
where
\( S \) = a scaling factor depending on the topological distance of i-j.
\( q_i \) and \( q_j \) = Partial atomic charges.
\( D \) = Dielectric constant.
\( R_{ij} \) = Interatomic distance (Å) (see calcDistance()).
\( \delta \) = Electrostatic buffering constant (0.05 Å).
\( n \) = Exponent (normally 1, but can be 2 for distance-dependent dielectric constant).
Note: 1-4 electrostatic interactions are scaled by 0.75 (thus, the electrostatic energy term becomes \( EQ_{14} \: 0.75 \)).
atom1_pos | The position of atom i. |
atom2_pos | The position of atom j. |
atom1_chg | The partial atom charge \( q_i \) of atom i. |
atom2_chg | The partial atom charge \( q_j \) of atom j. |
scale_fact | The scaling factor for \( S \) depending on the topological i-j distance. |
de_const | The dielectric constant \( D \). |
dist_expo | The exponent \( n \). |
float CDPL.ForceField.calcMMFF94StretchBendEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | ijk_force_const, | ||
float | kji_force_const, | ||
float | ref_angle, | ||
float | ref_length1, | ||
float | ref_length2 | ||
) |
Calculates the stretch-bend interaction energy \( EBA_{ijk} \) for two bonds i-j and j-k.
\( EBA_{ijk} = 2.51210 \: (kba_{IJK} \: \Delta r_{ij} + kba_{KJI} \: \Delta r_{kj}) \: \Delta \vartheta_{ijk} \)
where
\( kba_{IJK} \) = force constant in \( \frac{md}{rad} \) for i-j stretch coupled to i-j-k bend.
\( kba_{KJI} \) = force constant in \( \frac{md}{rad} \) for k-j stretch coupled to i-j-k bend.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J.
\( \Delta r_{kj} \) = \( r_{kj} - r_{KJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms k and j of types K and J.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees.
For the calculation of \( r_{ij} \), \( r_{kj} \), and \( \vartheta_{ijk} \) see calcBondLengthsAndAngle().
Currently, stretch-bend interactions are omitted when the i-j-k interaction corresponds to a linear bond angle.
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
ijk_force_const | The stretch-bend force constant \( kba_{IJK} \). |
kji_force_const | The stretch-bend force constant \( kba_{KJI} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
ref_length1 | The reference bond length \( r_{IJ}^0 \). |
ref_length2 | The reference bond length \( r_{KJ}^0 \). |
float CDPL.ForceField.calcMMFF94StretchBendEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | r_ij, | ||
float | r_jk, | ||
float | ijk_force_const, | ||
float | kji_force_const, | ||
float | ref_angle, | ||
float | ref_length1, | ||
float | ref_length2 | ||
) |
Calculates the stretch-bend interaction energy \( EBA_{ijk} \) for two bonds i-j and j-k.
\( EBA_{ijk} = 2.51210 \: (kba_{IJK} \: \Delta r_{ij} + kba_{KJI} \: \Delta r_{kj}) \: \Delta \vartheta_{ijk} \)
where
\( kba_{IJK} \) = force constant in \( \frac{md}{rad} \) for i-j stretch coupled to i-j-k bend.
\( kba_{KJI} \) = force constant in \( \frac{md}{rad} \) for k-j stretch coupled to i-j-k bend.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J.
\( \Delta r_{kj} \) = \( r_{kj} - r_{KJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms k and j of types K and J.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees.
For the calculation of \( r_{ij} \), \( r_{kj} \), and \( \vartheta_{ijk} \) see calcBondLengthsAndAngle().
Currently, stretch-bend interactions are omitted when the i-j-k interaction corresponds to a linear bond angle.
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
r_ij | The length of the bond between atom i and j. |
r_jk | The length of the bond between atom j and k. |
ijk_force_const | The stretch-bend force constant \( kba_{IJK} \). |
kji_force_const | The stretch-bend force constant \( kba_{KJI} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
ref_length1 | The reference bond length \( r_{IJ}^0 \). |
ref_length2 | The reference bond length \( r_{KJ}^0 \). |
float CDPL.ForceField.calcMMFF94AngleBendingEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
bool | linear, | ||
float | force_const, | ||
float | ref_angle | ||
) |
Calculates the angle bending interaction energy \( EA_{ijk} \) for two bonds i-j and j-k.
\( EA_{ijk} = 0.043844 \: \frac{ka_{IJK}}{2} \: \Delta \vartheta_{ijk}^2 \: (1 + cb \: \Delta \vartheta_{ijk}) \)
where
\( ka_{IJK} \) = angle bending force constant in \( \frac{md Ang}{rad^2} \) for the angle between atoms i, j and k of atom types I, J and K.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees (see calcBondAngle()).
\( cb \) = \( -0.007 \: deg^{-1} \), the "cubic-bend" constant.
For linear or near-linear bond angles such as those which occur in alkynes, nitriles, isonitriles, azides, and diazo compounds, the form used in DREIDING and UFF is employed:
\( EA_{ijk} = 143.9325 \: ka_{IJK} \:(1 + \cos(\vartheta_{ijk})) \)
where \( ka_{IJK} \) and \( \vartheta_{ijk} \) are defined as above.
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
linear | If True , the bond angle is linear. |
force_const | The angle bending force constant \( ka_{IJK} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
float CDPL.ForceField.calcMMFF94AngleBendingEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | r_ij, | ||
float | r_jk, | ||
bool | linear, | ||
float | force_const, | ||
float | ref_angle | ||
) |
Calculates the angle bending interaction energy \( EA_{ijk} \) for two bonds i-j and j-k.
\( EA_{ijk} = 0.043844 \: \frac{ka_{IJK}}{2} \: \Delta \vartheta_{ijk}^2 \: (1 + cb \: \Delta \vartheta_{ijk}) \)
where
\( ka_{IJK} \) = angle bending force constant in \( \frac{md Ang}{rad^2} \) for the angle between atoms i, j and k of atom types I, J and K.
\( \Delta \vartheta_{ijk} \) = \( \vartheta_{ijk} - \vartheta_{IJK}^0 \), the difference between actual and reference i-j-k bond angles in degrees (see calcBondAngle()).
\( cb \) = \( -0.007 \: deg^{-1} \), the "cubic-bend" constant.
For linear or near-linear bond angles such as those which occur in alkynes, nitriles, isonitriles, azides, and diazo compounds, the form used in DREIDING and UFF is employed:
\( EA_{ijk} = 143.9325 \: ka_{IJK} \:(1 + \cos(\vartheta_{ijk})) \)
where \( ka_{IJK} \) and \( \vartheta_{ijk} \) are defined as above.
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
r_ij | The length of the bond between atom i and j. |
r_jk | The length of the bond between atom j and k. |
linear | If True , the bond angle is linear. |
force_const | The angle bending force constant \( ka_{IJK} \). |
ref_angle | The reference bond angle \( \vartheta_{IJK}^0 \). |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | oop_atom_pos, | ||
float | force_const | ||
) |
Calculates the out-of-plane bending interaction energy \( EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k.
\( EOOP_{ijk;l} = 0.043844 \: \frac{koop_{IJK \colon L}}{2} \: \chi_{ijk;l}^2 \)
where
\( koop_{IJK \colon L} \) = out-of-plane bending force constant in \( \frac{md Ang}{rad^2} \).
\( \chi_{ijk;l} \) = angle in degrees between the bond j-l and the plane i-j-k, where j is the central atom (see calcOutOfPlaneAngle()).
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
oop_atom_pos | The position of the out-of-plane atom l. |
force_const | The out-of-plane bending force constant \( koop_{IJK \colon L} \). |
float CDPL.ForceField.calcMMFF94OutOfPlaneBendingEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
Math.Vector3D | oop_atom_pos, | ||
float | r_jl, | ||
float | force_const | ||
) |
Calculates the out-of-plane bending interaction energy \( EOOP_{ijk;l} \) for the bond j-l and the plane i-j-k.
\( EOOP_{ijk;l} = 0.043844 \: \frac{koop_{IJK \colon L}}{2} \: \chi_{ijk;l}^2 \)
where
\( koop_{IJK \colon L} \) = out-of-plane bending force constant in \( \frac{md Ang}{rad^2} \).
\( \chi_{ijk;l} \) = angle in degrees between the bond j-l and the plane i-j-k, where j is the central atom (see calcOutOfPlaneAngle()).
term_atom1_pos | The position of atom i. |
ctr_atom_pos | The position of the central atom j. |
term_atom2_pos | The position of atom k. |
oop_atom_pos | The position of the out-of-plane atom l. |
r_jl | The length of the bond between atom j and atom l. |
force_const | The out-of-plane bending force constant \( koop_{IJK \colon L} \). |
float CDPL.ForceField.calcMMFF94BondStretchingEnergy | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
float | force_const, | ||
float | ref_length | ||
) |
Calculates the bond stretching interaction energy \( EB_{ij} \) for the bond i-j.
\( EB_{ij} = 143.9325 \: \frac{kb_{IJ}}{2} \: \Delta r_{ij}^2 \times (1 + cs \: \Delta r_{ij} + \frac{7}{12} \: cs^2 \: \Delta r_{ij}^2) \)
where
\( kb_{IJ} \) = the bond stretching force constant in \( \frac{md}{Ang} \) for bonded atoms i and j of types I and J.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J (see calcDistance()).
\( cs \) = \( -2 \: Ang^{-1} \), the "cubic stretch" constant.
Note: throughout this description, the indices i, j, k, ... represent atoms; I, J, K, ... denote the corresponding numerical MMFF atom types (or, occasionally, the atomic species).
atom1_pos | The position of atom i. |
atom2_pos | The position of atom j. |
force_const | The bond stretching force constant \( kb_{IJ} \). |
ref_length | The reference bond length \( r_{IJ}^0 \). |
float CDPL.ForceField.calcElasticPotentialEnergy | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
float | force_const, | ||
float | ref_length | ||
) |
Calculates the energy \( E_{ij} \) of an elastic potential applied on a pair of atoms i-j.
\( E_{ij} = k_{ij} \: \Delta r_{ij}^2 \)
where
\( k_{ij} \) = the force constant of the elastic potential.
\( \Delta r_{ij} \) = \( r_{ij} - r_{ij}^0 \), the difference between actual and reference distance of the atoms i and j.
atom1_pos | The position of atom i. |
atom2_pos | The position of atom j. |
force_const | The force constant \( k_{ij} \). |
ref_length | The reference distance \( r_{ij}^0 \). |
float CDPL.ForceField.calcMMFF94TorsionEnergy | ( | Math.Vector3D | term_atom1_pos, |
Math.Vector3D | ctr_atom1_pos, | ||
Math.Vector3D | ctr_atom2_pos, | ||
Math.Vector3D | term_atom2_pos, | ||
float | tor_param1, | ||
float | tor_param2, | ||
float | tor_param3 | ||
) |
Calculates the torsion interaction energy \( ET_{ijkl} \) for the central bond j-k and the connected bonds i-j and k-l.
\( ET_{ijkl} = 0.5 \: (V_1 \: (1 + \cos(\Phi_{ijkl})) + V_2 \: (1 - \cos(2 \: \Phi_{ijkl})) + V_3 \: (1 + \cos(3 \: \Phi_{ijkl}))) \)
where \( \Phi_{ijkl} \) is the i-j-k-l dihedral angle. The constants \( V_1 \), \( V_2 \) and \( V_3 \) depend on the atom types I, J, K and L for atoms i, j, k and l, where i-j, j-k and k-l are bonded pairs and i is not equal to l.
For the calculation of \( \cos(\Phi_{ijkl}) \) see calcDihedralAngleCos().
term_atom1_pos | The position of the terminal atom i. |
ctr_atom1_pos | The position of the central atom j. |
ctr_atom2_pos | The position of the central atom k. |
term_atom2_pos | The position of the terminal atom l. |
tor_param1 | The torsion parameter \( V_1 \). |
tor_param2 | The torsion parameter \( V_2 \). |
tor_param3 | The torsion parameter \( V_3 \). |
float CDPL.ForceField.calcMMFF94VanDerWaalsEnergy | ( | Math.Vector3D | atom1_pos, |
Math.Vector3D | atom2_pos, | ||
float | e_IJ, | ||
float | r_IJ, | ||
float | r_IJ_7 | ||
) |
Calculates the van der Waals interaction energy \( E_{vdW_{ij}} \) for the atom pair i-j.
\( E_{vdW_{ij}} = \varepsilon_{IJ} \: (\frac{1.07 \: R_{IJ}^*}{(R_{ij} + 0.07 \: R_{IJ}^*)})^7 \: (\frac{1.12 \: R_{IJ}^{*^7}}{(R_{ij}^7 + 0.12 \: R_{IJ}^{*^7})} - 2) \;\;\;\; (1) \)
where
\( R_{ij} \) = the interatomic distance (see calcDistance()).
\( R_{II}^* = A_I \: \alpha_I^{PEXP} \;\;\;\; (2) \)
\( R_{IJ}^* = 0.5 \: (R_{II}^* + R_{JJ}^*) \: (1 + AFACT(1 - \exp(-BFACT \: \gamma_{IJ}^2))) \;\;\;\; (3) \)
\( \gamma_{IJ} = \frac{(R_{II}^* - R_{JJ}^*)}{(R_{II}^* + R_{JJ}^*)} \;\;\;\; (4) \)
\( \varepsilon_{IJ} = \frac{181.16 \: G_I \: GJ \: \alpha_I \: \alpha_J}{((\alpha_I / N_I)^{1/2} + (\alpha_J / N_J)^{1/2})} \: \frac{1}{R_{IJ}^{*^6}} \;\;\;\; (5) \)
MMFF employs a "Buffered 14-7" form (eq 1) together with an expression which relates the minimum-energy separation \( R_{II}^* \) to the atomic polarizability \( \alpha_I \) (eq 2), a specially formulated combination rule (eqs 3, 4), and a Slater-Kirkwood expression for the well depth \( \varepsilon_{IJ} \) (eq 5): The first non-comment line in the parameter file "MMFFVDW.PAR" contains five floating point numbers which define the variables PEXP, AFACT, BFACT, DARAD, and DAEPS, respectively. PEXP (currently 0.25), AFACT (currently 0.2) and BFACT (currently 12.0) are used in the equations shown above; DARAD and DAEPS are used as follows:
When either i or j is a hydrogen-bond donor, MMFF uses the simple arithmetic mean \( 0.5 \: (R_{II}^* + R_{JJ}^*) \) instead of eq 3 to obtain \( R_{IJ}^* \). If the i-j interaction is a donor-acceptor interaction, MMFF also scales \( R_{IJ}^* \) as given by eq 3 by DARAD (currently 0.8) and \( \varepsilon_{IJ} \) as given by eq 5 by DAEPS (currently 0.5).
atom1_pos | The position of atom i. |
atom2_pos | The position of atom j. |
e_IJ | The precalculated value \( \varepsilon_{IJ} \). |
r_IJ | The precalculated value \( R_{IJ}^* \). |
r_IJ_7 | The precalculated value \( R_{IJ}^{*^7} \). |
float CDPL.ForceField.calcMMFF94ElectrostaticEnergy | ( | float | r_ij, |
float | atom1_chg, | ||
float | atom2_chg, | ||
float | scale_fact, | ||
float | de_const, | ||
float | dist_expo | ||
) |
Calculates the electrostatic interaction energy \( EQ_{ij} \) for the atom pair i-j.
\( EQ_{ij} = S \: 332.0716 \: \frac{q_i \: q_j}{D \: (R_{ij} + \delta)^n} \)
where
\( S \) = a scaling factor depending on the topological distance of i-j.
\( q_i \) and \( q_j \) = Partial atomic charges.
\( D \) = Dielectric constant.
\( R_{ij} \) = Interatomic distance (Å) (see calcDistance()).
\( \delta \) = Electrostatic buffering constant (0.05 Å).
\( n \) = Exponent (normally 1, but can be 2 for distance-dependent dielectric constant).
Note: 1-4 electrostatic interactions are scaled by 0.75 (thus, the electrostatic energy term becomes \( EQ_{14} \: 0.75 \)).
r_ij | The interatomic distance \( R_{ij} \) of atom i and atom j. |
atom1_chg | The partial atom charge \( q_i \) of atom i. |
atom2_chg | The partial atom charge \( q_j \) of atom j. |
scale_fact | The scaling factor for \( S \) depending on the topological i-j distance. |
de_const | The dielectric constant \( D \). |
dist_expo | The exponent \( n \). |
float CDPL.ForceField.calcMMFF94BondStretchingEnergy | ( | float | r_ij, |
float | force_const, | ||
float | ref_length | ||
) |
Calculates the bond stretching interaction energy \( EB_{ij} \) for the bond i-j.
\( EB_{ij} = 143.9325 \: \frac{kb_{IJ}}{2} \: \Delta r_{ij}^2 \times (1 + cs \: \Delta r_{ij} + \frac{7}{12} \: cs^2 \: \Delta r_{ij}^2) \)
where
\( kb_{IJ} \) = the bond stretching force constant in \( \frac{md}{Ang} \) for bonded atoms i and j of types I and J.
\( \Delta r_{ij} \) = \( r_{ij} - r_{IJ}^0 \), the difference in angstroms between actual and reference bond lengths between bonded atoms i and j of types I and J (see calcDistance()).
\( cs \) = \( -2 \: Ang^{-1} \), the "cubic stretch" constant.
Note: throughout this description, the indices i, j, k, ... represent atoms; I, J, K, ... denote the corresponding numerical MMFF atom types (or, occasionally, the atomic species).
r_ij | The length of the bond between atom i and j. |
force_const | The bond stretching force constant \( kb_{IJ} \). |
ref_length | The reference bond length \( r_{IJ}^0 \). |
float CDPL.ForceField.calcMMFF94VanDerWaalsEnergy | ( | float | r_ij, |
float | e_IJ, | ||
float | r_IJ, | ||
float | r_IJ_7 | ||
) |
Calculates the van der Waals interaction energy \( E_{vdW_{ij}} \) for the atom pair i-j.
\( E_{vdW_{ij}} = \varepsilon_{IJ} \: (\frac{1.07 \: R_{IJ}^*}{(R_{ij} + 0.07 \: R_{IJ}^*)})^7 \: (\frac{1.12 \: R_{IJ}^{*^7}}{(R_{ij}^7 + 0.12 \: R_{IJ}^{*^7})} - 2) \;\;\;\; (1) \)
where
\( R_{ij} \) = the interatomic distance (see calcDistance()).
\( R_{II}^* = A_I \: \alpha_I^{PEXP} \;\;\;\; (2) \)
\( R_{IJ}^* = 0.5 \: (R_{II}^* + R_{JJ}^*) \: (1 + AFACT(1 - \exp(-BFACT \: \gamma_{IJ}^2))) \;\;\;\; (3) \)
\( \gamma_{IJ} = \frac{(R_{II}^* - R_{JJ}^*)}{(R_{II}^* + R_{JJ}^*)} \;\;\;\; (4) \)
\( \varepsilon_{IJ} = \frac{181.16 \: G_I \: GJ \: \alpha_I \: \alpha_J}{((\alpha_I / N_I)^{1/2} + (\alpha_J / N_J)^{1/2})} \: \frac{1}{R_{IJ}^{*^6}} \;\;\;\; (5) \)
MMFF employs a "Buffered 14-7" form (eq 1) together with an expression which relates the minimum-energy separation \( R_{II}^* \) to the atomic polarizability \( \alpha_I \) (eq 2), a specially formulated combination rule (eqs 3, 4), and a Slater-Kirkwood expression for the well depth \( \varepsilon_{IJ} \) (eq 5): The first non-comment line in the parameter file "MMFFVDW.PAR" contains five floating point numbers which define the variables PEXP, AFACT, BFACT, DARAD, and DAEPS, respectively. PEXP (currently 0.25), AFACT (currently 0.2) and BFACT (currently 12.0) are used in the equations shown above; DARAD and DAEPS are used as follows:
When either i or j is a hydrogen-bond donor, MMFF uses the simple arithmetic mean \( 0.5 \: (R_{II}^* + R_{JJ}^*) \) instead of eq 3 to obtain \( R_{IJ}^* \). If the i-j interaction is a donor-acceptor interaction, MMFF also scales \( R_{IJ}^* \) as given by eq 3 by DARAD (currently 0.8) and \( \varepsilon_{IJ} \) as given by eq 5 by DAEPS (currently 0.5).
r_ij | The interatomic distance \( R_{ij} \) of atom i and atom j. |
e_IJ | The precalculated value \( \varepsilon_{IJ} \). |
r_IJ | The precalculated value \( R_{IJ}^* \). |
r_IJ_7 | The precalculated value \( R_{IJ}^{*^7} \). |