|
Chemical Data Processing Library C++ API - Version 1.0.0
|
Go to the documentation of this file.
29 #ifndef CDPL_MATH_MLRMODEL_HPP
30 #define CDPL_MATH_MLRMODEL_HPP
78 template <
typename T =
double>
92 chiSquare(0), Q(0), r(0), stdDeviation(0) {}
121 template <
typename V>
138 template <
typename V>
185 template <
typename V>
199 template <
typename V>
306 template <
typename T>
309 if (num_points == xMatrix.getSize1() && num_vars == xMatrix.getSize2())
312 xMatrix.resize(num_points, num_vars,
true,
ValueType());
316 template <
typename T>
320 xMatrix.resize(0, 0,
false);
323 template <
typename T>
324 template <
typename V>
327 SizeType x_mtx_size1 = xMatrix.getSize1();
328 SizeType x_mtx_size2 = xMatrix.getSize2();
329 SizeType x_vars_size = x_vars().getSize();
330 SizeType y_vals_size = yValues.getSize();
332 resizeDataSet(std::max(i + 1, std::max(x_mtx_size1, y_vals_size)), std::max(x_vars_size, x_mtx_size2));
334 for (
SizeType j = 0; j < x_vars_size; j++)
335 xMatrix(i, j) = x_vars()(j);
337 if (x_vars_size < x_mtx_size2)
338 for (
SizeType j = x_vars_size; j < x_mtx_size2; j++)
344 template <
typename T>
345 template <
typename V>
349 SizeType x_mtx_size2 = xMatrix.getSize2();
350 SizeType x_vars_size = x_vars().getSize();
352 resizeDataSet(i + 1, std::max(x_mtx_size2, x_vars_size));
354 for (
SizeType j = 0; j < x_vars_size; j++)
355 xMatrix(i, j) = x_vars()(j);
357 if (x_vars_size < x_mtx_size2)
358 for (
SizeType j = x_vars_size; j < x_mtx_size2; j++)
364 template <
typename T>
371 template <
typename T>
378 template <
typename T>
385 template <
typename T>
392 template <
typename T>
400 if (m == 0 || n == 0)
403 if (n !=
SizeType(yValues.getSize()))
404 resizeDataSet(std::max(
SizeType(yValues.getSize()), n), m);
406 svdU.resize(n, m,
false);
407 svdV.resize(m, m,
false);
408 svdW.resize(m,
false);
427 coefficients.resize(m,
false);
432 template <
typename T>
433 template <
typename V>
438 throw Base::CalculationFailed(
"MLRModel: number of regression coefficients does not match number of independent variables");
443 template <
typename T>
444 template <
typename V>
448 return calcYValue(x);
451 template <
typename T>
458 template <
typename T>
465 template <
typename T>
472 template <
typename T>
479 template <
typename T>
486 template <
typename T>
497 if (m !=
SizeType(coefficients.getSize()))
498 throw Base::CalculationFailed(
"MLRModel: number of independent variables does not match number of regression coefficients");
500 if (n !=
SizeType(yValues.getSize()))
501 throw Base::CalculationFailed(
"MLRModel: number of dependent variables does not match number of vectors with independent variables");
503 calcYValues.resize(n);
510 mean_data_y += data_y;
511 mean_calc_y += calc_y;
512 chiSquare += y_diff * y_diff;
514 calcYValues(i) = calc_y;
526 ValueType yt = calcYValues(i) - mean_calc_y;
540 #endif // CDPL_MATH_MLRMODEL_HPP
const unsigned int Q
A generic type that covers any element except hydrogen and carbon.
Definition: AtomType.hpp:627
void resizeDataSet(SizeType num_points, SizeType num_vars)
Resizes the data set to hold num_points data points with num_vars independent variables.
Definition: MLRModel.hpp:307
Definition: TypeTraits.hpp:171
Matrix< T > MatrixType
Definition: MLRModel.hpp:85
CommonType< typename Vector< T >::SizeType, typename Matrix< T >::SizeType >::Type SizeType
Definition: MLRModel.hpp:83
void setXYData(SizeType i, const VectorExpression< V > &x_vars, ValueType y)
Sets the i-th data point of the data set.
Definition: MLRModel.hpp:325
Definition: Expression.hpp:54
Performs Multiple Linear Regression [WLIREG] on a set of data points .
Definition: MLRModel.hpp:80
VectorInnerProduct< E1, E2 >::ResultType innerProd(const VectorExpression< E1 > &e1, const VectorExpression< E2 > &e2)
Definition: VectorExpression.hpp:504
const VectorType & getCoefficients() const
Returns a read-only vector containing the estimated regression coefficients which were calculated by...
Definition: MLRModel.hpp:453
void clearDataSet()
Clears the data set.
Definition: MLRModel.hpp:317
ValueType calcYValue(const VectorExpression< V > &x_vars) const
Predicts the value of the dependent variable for a vector of independent variables given by x_vars.
ValueType getCorrelationCoefficient() const
Returns the correlation coefficient .
Definition: MLRModel.hpp:474
Vector< T > VectorType
Definition: MLRModel.hpp:86
MLRModel()
Constructs and initializes a regression model with an empty data set.
Definition: MLRModel.hpp:91
ValueType getGoodnessOfFit() const
Returns the goodness of fit .
Definition: MLRModel.hpp:467
Definition: CommonType.hpp:41
void addXYData(const VectorExpression< V > &x_vars, ValueType y)
Adds a new data point to the current data set.
Definition: MLRModel.hpp:346
MatrixType & getXMatrix()
Returns a matrix where each row represents the vector with independent variables of the currently st...
Definition: MLRModel.hpp:366
T gammaQ(const T &a, const T &x)
Computes the incomplete gamma function (see [NRIC] for details).
CDPL_PHARM_API const Base::LookupKey TOLERANCE
Definition of type traits.
VectorType & getYValues()
Returns a vector containing the dependent variables of the currently stored data points .
Definition: MLRModel.hpp:380
ValueType operator()(const VectorExpression< V > &x_vars) const
Predicts the value of the dependent variable for a vector of independent variables given by x_vars.
ValueType getStandardDeviation() const
Returns the standard deviation of the residuals .
Definition: MLRModel.hpp:481
Implementation of matrix singular value decomposition and associated operations.
Thrown to indicate that some requested calculation has failed.
Definition: Base/Exceptions.hpp:230
const unsigned int T
Specifies Hydrogen (Tritium).
Definition: AtomType.hpp:67
Definition of exception classes.
ValueType getChiSquare() const
Returns the sum of squared residuals .
Definition: MLRModel.hpp:460
Definition: Matrix.hpp:280
Provides miscellaneous special mathematical functions.
The namespace of the Chemical Data Processing Library.
T ValueType
Definition: MLRModel.hpp:84
void buildModel()
Performs linear least squares regression modeling of the set of currently stored data points .
Definition: MLRModel.hpp:393
MatrixRow< M > row(MatrixExpression< M > &e, typename MatrixRow< M >::SizeType i)
Definition: MatrixProxy.hpp:716
Definition of matrix data types.
void calcStatistics()
Calculates various statistical parameters describing the built regression model.
Definition: MLRModel.hpp:487
void svSubstitute(const MatrixExpression< U > &u, const VectorExpression< W > &w, const MatrixExpression< V > &v, const VectorExpression< B > &b, VectorExpression< X > &x)
Solves for a vector where is given by its Singular Value Decomposition [WSVD].
Definition: SVDecomposition.hpp:466
bool svDecompose(MatrixExpression< A > &a, VectorExpression< W > &w, MatrixExpression< V > &v, std::size_t max_iter=0)
Computes the Singular Value Decomposition [WSVD] of a -dimensional matrix a.
Definition: SVDecomposition.hpp:70
Definition of vector data types.